<span>Radioactive isotopes have been used commercially in all these applications.
The last option (D) is your answer
</span>
Answer:
5.4 tonnes.
Explanation:
The first step is to find the molar mass of Al2O3. Aluminum has a molar mass of about 27 and oxygen has a molar mass of about 16, so 2(27)+3(16)= 102g/mol=0.102kg/mol. 10200kg/0.102kg/mol=100,000 moles of Al2O3 in 10.2 tonnes. Multiplying this by the molar mass of the two aluminums, you get a total of 54*100,000=5400000g=5400kg=5.4 tonnes. Hope this helps!
Answer :
B
!!!!!!!!!!!!!!!
Answer:
Number of molecules = 1.8267×10^20
Explanation:
From the question, we can deuced that the gases behave ideally, the we can make use of the ideal gas equation, which is expressed below;
PV = nRT
where
P =pressure
V =volume
n = the number of moles
R is the gas constant equal to 0.0821 L·atm/mol·K
T is the absolute temperature
Given:
P = 6.75 atm;
T = 290.0 k,
; V = 1.07 cm³ = 0.001 L
( 6.75 atm)(0.00107 L) = n(0.0821 L·atm/mol·K)(290K)
n = 3.0335167*10^-4 moles
But there are 6.022×10²³ molecules in 1 mole,
Number of molecules = 1.8267×10^20
Answer:
Explanation:
This is the answer it all done in order i hope this helps tell em if u dont understnad it