Beaker does thermometer measures the thermal energy in the air
Maybe if you put it in english i’ll answer.. nahh jp i’m fluent
Answer:
1.12g/mol
Explanation:
The freezing point depression of a solvent for the addition of a solute follows the equation:
ΔT = Kf*m*i
<em>Where ΔT is change in temperature (Benzonitrile freezing point: -12.82°C; Freezing point solution: 13.4°C)</em>
<em>ΔT = 13.4°C - (-12.82) = 26.22°C</em>
<em>m is molality of the solution</em>
<em>Kf is freezing point depression constant of benzonitrile (5.35°Ckgmol⁻¹)</em>
<em>And i is Van't Hoff factor (1 for all solutes in benzonitrile)</em>
Replacing:
26.22°C = 5.35°Ckgmol⁻¹*m*1
4.90mol/kg = molality of the compound X
As the mass of the solvent is 100g = 0.100kg:
4.9mol/kg * 0.100kg = 0.490moles
There are 0.490 moles of X in 551mg = 0.551g, the molar mass (Ratio of grams and moles) is:
0.551g / 0.490mol
= 1.12g/mol
<em>This result has no sense but is the result by using the freezing point of the solution = 13.4°C. Has more sense a value of -13.4°C.</em>
Chloroplast, its where photosynthesis happens and the cell wall which only plants fungi and bacteria have.
Answer:
n = 2.208x10¹⁸ photons
Explanation:
The energy of a photon( an elementary particle) is given by the equation:
E = nxhxf
Where n is the number of photons, h is plank constant (6,62x10⁻³⁴ J.s), and f is the frequency. Knowing that the power level is 0.120mW (1.2x10⁻⁴ W), the energy in J, for a time of 78 min (4680 s)
E = 1.2x10⁻⁴x4680 = 0.5616 J
The frequency of a photon is its velocity ( c= 3x10⁸ m/s) divided by its wavelength, which is 780 nm = 780x10⁻⁹ m
f = 3x10⁸/780x10⁻⁹
f = 3.846x10¹⁴ s⁻¹
Then, the number of photons is:
0.5616 = nx6,62x10⁻³⁴x3.846x10¹⁴
n = 2.208x10¹⁸ photons.