Answer:
Its Answer is 10 s.
Explanation:
As acceleration is defined as time rate of change of velocity. So,
a =
÷ t
2 = (20 - 0 ) ÷ t
2 = 20 ÷ t
t = 20 ÷ 2
t = 10 s
We have put initial velocity as zero because body is starting from rest.
<em>Hope it helps.</em>
With 0.45 amp flowing through an 18-ohm resistor, the voltage across it is
V = I R = (0.45) x (18) = <em>8.1 volts .</em>
"But I asked for the battery voltage! That's the voltage across the resistor."
The ends of the resistor are connected directly to the battery terminals.
They're the same voltage.
"But what about the 6-ohm resistor ? Where does that figure in ?"
In parallel, it doesn't. It's also connected directly across the battery,
and it has its own current.
In parallel, neither resistor knows or cares whether or not there are
any other resistors present. In parallel, it makes no dif.
Answer:
The moment of inertia of the wheel is 0.593 kg-m².
Explanation:
Given that,
Force = 82.0 N
Radius r = 0.150 m
Angular speed = 12.8 rev/s
Time = 3.88 s
We need to calculate the torque
Using formula of torque



Now, The angular acceleration


We need to calculate the moment of inertia
Using relation between torque and moment of inertia




Hence, The moment of inertia of the wheel is 0.593 kg-m².
To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by

Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

According to the data given we have to,




PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is



On the other hand,



The total change of entropy would be,



Since
the heat engine is not reversible.
PART B)
Work done by heat engine is given by



Therefore the work in the system is 100000Btu