Answer:
20 m/s
Explanation:
Given:
Δy = 0.02 km = 20 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: v
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (9.8 m/s²) (20 m)
v = 19.8 m/s
Rounded to one significant figure, the final velocity is 20 m/s towards the ground.
<u>Answer</u>
You should still ensure you are steering straight in the direction of skidding.
Take your foot off the brake unless you are about to hit something. steer in the direction of the skid to straighten your car.
That is tention in the butt hole? /*\
Answer:
Explanation:
This question appears incomplete because of the absence of the data been talked about in the question. However, there is a general ruling here and it can be applied to the data at hand.
If an increase in the distance of charges (let's denote with "d") causes the electric field strength (let's denote with"E") to increase, then the mathematical representation can be illustrated as d ∝ E (meaning distance of charge is directly proportional to electric field strength).
But if an increase in the distance of the charges causes the electric field strength to decrease, then the mathematical representation can be illustrated as d ∝ 1/E (meaning distance of charge is inversely proportional to electric field strength).
A scatterplot can also be used to determine this. If there is a positive correlation (correlation value is greater than zero but less than or equal to 1) on the graph, then it is illustrated as "d ∝ E" BUT if there is a negative correlation (correlation value is less than zero but greater than or equal to -1), then it can be illustrated as "d ∝ 1/E".
Answer:
frictonal force due to the surface of irregularities