Step 1:
Start by putting

in front of each term
![\frac{d}{dx}[y cos x]= \frac{d}{dx}[5x^2]+ \frac{d}{dx}[ 3y^2]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5By%20cos%20x%5D%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B5x%5E2%5D%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%203y%5E2%5D)
-----------------------------------------------------------------------------------------------------------------
Step 2:
Deal with the terms in 'x' and the constant terms
![\frac{d}{dx}[ycosx]= 10x+ \frac{d}{dx} [3y^2]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bycosx%5D%3D%2010x%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B3y%5E2%5D%20%20)
----------------------------------------------------------------------------------------------------------------
Step 3:
Use the chain rule for the terms in 'y'
![\frac{d}{dx}[ycosx]=10x+6y \frac{dy}{dx}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bycosx%5D%3D10x%2B6y%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%20)
--------------------------------------------------------------------------------------------------------------
Step 4:
Use the product rule on the term in 'x' and 'y'


--------------------------------------------------------------------------------------------------------------
Step 5:
Rearrange to make

the subject


![[cos(x) - 6y] \frac{dy}{dx}=10x + y sin(y)](https://tex.z-dn.net/?f=%5Bcos%28x%29%20-%206y%5D%20%20%5Cfrac%7Bdy%7D%7Bdx%7D%3D10x%20%2B%20y%20sin%28y%29%20)

⇒ Final Answer
Answer:
y = 2x - 10
Step-by-step explanation:
y2 - y1/ x2 - x1
0 - 2 / 5 - 6
= 2
y = 2x + b
2 = 2(6) +b
2 = 12 + b
-10 = b
The equation is y = 2x - 10
what do you need help with
Answer:
1.1
Step-by-step explanation:
Write out a long division problem! Since you can't have a decimal in the divisor, multiply both numbers by 10. This will leave you with 39.6÷36. Now all you have to do is follow the steps and end up with an answer of 1.1