1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
4 years ago
12

In a flying ski jump, the skier acquires a speed of 110 km/h by racing down a steep hill and then lifts off into the air from a

horizontal ramp. Beyond this ramp, the ground slopes downward at an angle of 45◦. (a) Assuming that the skier is in a free-fall motion after he leaves the ramp, at what distance down the slope will he land? What is his displacement vector from the point of ‘lift off’?

Physics
1 answer:
matrenka [14]4 years ago
4 0

Answer:

Approximately \displaystyle\rm \left[ \begin{array}{c}\rm191\; m\\\rm-191\; m\end{array}\right].

Explanation:

Consider this 45^{\circ} slope and the trajectory of the skier in a cartesian plane. Since the problem is asking for the displacement vector relative to the point of "lift off", let that particular point be the origin (0, 0).

Assume that the skier is running in the positive x-direction. The line that represents the slope shall point downwards at 45^{\circ} to the x-axis. Since this slope is connected to the ramp, it should also go through the origin. Based on these conditions, this line should be represented as y = -x.

Convert the initial speed of this diver to SI units:

\displaystyle v = \rm 110\; km\cdot h^{-1} = 110 \times \frac{1}{3.6} = 30.556\; m\cdot s^{-1}.

The question assumes that the skier is in a free-fall motion. In other words, the skier travels with a constant horizontal velocity and accelerates downwards at g (g \approx \rm -9.81\; m\cdot s^{-2} near the surface of the earth.) At t seconds after the skier goes beyond the edge of the ramp, the position of the skier will be:

  • x-coordinate: 30.556t meters (constant velocity;)
  • y-coordinate: \displaystyle -\frac{1}{2}g\cdot t^{2} = -\frac{9.81}{2}\cdot t^{2} meters (constant acceleration with an initial vertical velocity of zero.)

To eliminate t from this expression, solve the equation between t and x for t. That is: express t as a function of x.

x = 30.556\;t\implies \displaystyle t = \frac{x}{30.556}.

Replace the t in the equation of y with this expression:

\begin{aligned} y = &-\frac{9.81}{2}\cdot t^{2}\\ &= -\frac{9.81}{2} \cdot \left(\frac{x}{30.556}\right)^{2}\\&= -0.0052535\;x^{2}\end{aligned}.

Plot the two functions:

  • y = -x,
  • \displaystyle y= -0.0052535\;x^{2},

and look for their intersection. Refer to the diagram attached.

Alternatively, equate the two expressions of y (right-hand side of the equation, the part where y is expressed as a function of x.)

-0.0052535\;x^{2} = -x,

\implies x = 190.35.

The value of y can be found by evaluating either equation at this particular x-value: x = 190.35.

y = -190.35.

The position vector of a point (x, y) on a cartesian plane is \displaystyle \left[\begin{array}{l}x \\ y\end{array}\right]. The coordinates of this skier is approximately (190.35, -190.35). The position vector of this skier will be \displaystyle\rm \left[ \begin{array}{c}\rm191\\\rm-191\end{array}\right]. Keep in mind that both numbers in this vectors are in meters.

You might be interested in
Chromosomes are a form of blood cells.
Inessa05 [86]

Answer:

false im just trying to get it if you'd like to give it to me

8 0
3 years ago
Read 2 more answers
The center of a moon of mass m is a distance D from the center of a planet of mass M. At some distance x from the center of the
nataly862011 [7]

Answer with Explanation:

Let  rest mass m_0 at point P  at  distance x from center of the planet, along a line connecting the centers of planet and the moon.

Mass of moon=m

Distance between the center of moon and center of planet=D

Mass of planet=M

We are given that net force on an object will be zero

a.We have to derive an expression for x in terms of m, M and D.

We know that gravitational force=\frac{GmM}{r^2}

Distance of P from moon=D-x

F_m=Force applied on rest mass due to m

F_m=Force on rest mass due to mas M

F_M=F_m because net force is equal to 0.

F_m=F_M

\frac{Gm_0m}{(D-x)^2}=\frac{Gm_0M}{x^2}

\frac{m}{(D-x)^2}=\frac{M}{x^2}

\frac{x^2}{(D-x)^2}=\frac{M}{m}

\frac{x}{D-x}=\sqrt{\frac{M}{m}}

Let R=\sqrt{\frac{M}{m}}

Then, \frac{x}{D-x}=R

x=DR-xR

x+xR=DR

x(1+R)=DR

x=\frac{DR}{1+R}

b.We have to find the ratio R of the mass of the mass of the planet to the mass of the moon when x=\frac{2}{3}D

Net force is zero

F_m=F_M

\frac{Gm_0m}{(D-\frac{2}{3}D)^2}=\frac{Gm_0M}{\frac{4}{9}D^2}

\frac{m}{\frac{D^2}{9}}=\frac{9M}{4D^2}

\frac{M}{m}=4

Hence, the ratio R of the mass of the planet to the mass of the moon=4:1

8 0
4 years ago
please write the definition of instantaneous speed, velocity and acceleration and solve problems on them please show workings​
Katyanochek1 [597]

Answer:

instantaneous speed: The instantaneous speed is the speed of an object at a particular moment in time. And if you include the direction with that speed, you get the instantaneous velocity. In other words, eight meters per second to the right was the instantaneously velocity of this person at that particular moment in time.

velocity: the speed of something in a given direction.

acceleration: a vehicle's capacity to gain speed within a short time.

solve problems: Problem solving consists of using generic or ad hoc methods in an orderly manner to find solutions to problems.

Explanation:

7 0
3 years ago
Which relationship benefits two organisms
grandymaker [24]

Answer:

mutualism

Explanation:

Mutualism, a relationship in which both species benefit, is common in nature. In microbiology, there are many examples of mutualistic bacteria in the gut that aid digestion in both humans and animals.

8 0
3 years ago
Which of the following would most likely be an example of a mass-transit disaster?
Aleonysh [2.5K]

Answer:

i think it is c if not im sorry if im wrong

Explanation:

7 0
3 years ago
Other questions:
  • A person drives to the top of a mountain. On the way up, the person’s ears fail to “pop,” or equalize the pressure of the inner
    5·1 answer
  • Can anyone help me answer this Grade 8 Science question soon as possible?
    15·2 answers
  • Using the rules for significant figures, what do you get when you subtract 15.54 from 508.9538?
    5·2 answers
  • A rod of length 30.0 cm has linear density (mass per length) given by l 5 50.0 1 20.0x where x is the distance from one end, mea
    9·1 answer
  • Now that we have a feel for the state of the circuit in its steady state, let us obtain the expression for the current in the ci
    15·1 answer
  • Please help,,, question on image
    13·1 answer
  • A 30 kg block with velocity 50 m/s is encountering a constant 8 N friction force. What is the momentum of the block after 15 sec
    12·1 answer
  • De ce omul nu poate suporta temperaturi mari intr-o atmosfera umeda?
    6·2 answers
  • B. Add the potential and kinetic energy for each location to find the total energy. What do you notice
    11·1 answer
  • Use the diagram of the pulley system to complete the statement.In this pulley system, the pulleys will _____ the mechanical forc
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!