Explanation:
Given that,
Initial speed of a car, u = 60 km/h = 16.67 m/s
Acceleration, a = 2m/s²
Final speed, v = 120 km/h = 33.33 m/s
We need to find the distance traveled and the time taken to make the distance.
acceleration = rate of change of velocity

let the distance be d.

Hence, the distance traveled and the time taken to make the distance is 208.25 m and 8.33 seconds respectively.
The medium determines the speed of the wave traveling in it, which also can have a number of other effects, including how much the wave bends (refracts), whether it reflects, etc.
Because waves move through space, they must have a velocity. The velocity of a wave is a function of the type of wave, and the medium it travels through. Electromagnetic waves moving through a vacuum, for instance, travel at roughly 3 x
10
8
m/s. This value is so famous and common in physics it is given its own symbol, c.
PART a)
As we know that gravitational potential energy is given by the formula

here we can see that gravitational potential energy inversely varies with the distance
so here when distance from the sun is minimum then magnitude of gravitational potential energy is maximum while since it is given with negative sign so its overall value is minimum at that position
So gravitational potential energy is minimum at the nearest point and maximum at the farthest point
PART b)
Since we know that sum of kinetic energy and potential energy is constant here
so the points of minimum potential energy is the point where kinetic energy is maximum which means speed is maximum
So here speed is maximum at the nearest point
Part C)
since gravitational potential energy inversely varies with distance so it's graph will be like hyperbolic graph with distance