The numerical sum of the degree measures of m ∠DEA and m ∠AEF and m ∠DEF is 360°; The numerical measures of the angles is,
m ∠DEA = 56°
m ∠AEF = 158°
m ∠DEF = 146°
Based on the given data,
m ∠DEA= x + 30,
m ∠AEF= x + 132, and
m ∠DEF= 146 degrees
If the sum of two linear angles is 360° then, they are known as supplementary angles.
∠A + ∠B + ∠C = 360°, (∠A and ∠B and ∠C are linear angles.)
So,
We can write,
m ∠AEF + m ∠DEA + m ∠DEF = 360°
( x + 132) + (x + 30) + 146 = 360°
x + 30 + x + 132 + 146 = 360°
2x + 308 = 360°
2x = 360° - 308
x = 52/2
x =26
Now, we will substitute the value of x = 26° in the ∠DEA and ∠AEF, hence we get:
m ∠DEA = x + 30
m ∠DEA = 26 + 30
m ∠DEA = 56 degrees
Also,
m ∠AEF = x + 132
m ∠AEF = 26 + 132
m ∠AEF = 158
Hence,
m ∠DEA + m ∠AEF + m ∠DEF = 360°
56 + 158 + 146 = 360°
360° = 360°
Therefore,
Therefore, the numerical sum of the degree measures of m ∠DEA and m ∠AEF and m ∠DEF is 360°; The numerical measures of the angles is,
m ∠DEA = 56°
m ∠AEF = 158°
m ∠DEF = 146°
To learn more about information visit Supplementary angles :
brainly.com/question/17550923
#SPJ1
Answer:
Undefined
Step-by-step explanation:
If the slope was a horizontal line, then we could say y=2, however, it is only going through the x-axis so it would be x=2, but in terms of y it is undefined.
Answer:
Step-by-step explanation:
A negative number times a negative number is a positive.
Hope this helps you!
is here to help
Write the number out:
ex) 2 dots on number 3 so write number 3 twice and etc
3,3,4,5,5,5,6,8,8
find the middle number
5 is the middle number so it’s the median
By using <em>triangle</em> properties and the law of the cosine twice, we find that the distance between points M and N is approximately 9.8 meters.
<h3>How to determine the distance between two points</h3>
In this problem we must determine the distance between two points that are part of a triangle and we can take advantage of properties of triangles to find it. First, we determine the measure of angle L by the law of the cosine:

L ≈ 62.464°
Then, we get the distance between points M and N by the law of the cosine once again:

MN ≈ 9.8 m
By using <em>triangle</em> properties and the law of the cosine twice, we find that the distance between points M and N is approximately 9.8 meters.
To learn more on triangles: brainly.com/question/2773823
#SPJ1