Answer:
B
Step-by-step explanation:
Since (-3, -4) is in Quadrant III and the reflected point will be "flipped" vertically the answer is Quadrant II.
Answer:
-29.7
Step-by-step explanation:
Assuming sea level is at 0, you would first subtract 25.65 from 0 to indicate diving 25.65 feet BELOW 0. Then, you subtract 16.5 from that. Then, add 12.45 to that number to get the answer after the diver rose 12.45 feet.
0-25.65= -25.65
-25.65-16.5= -42.15
-42.15+ 12.45= -29.7
OR 29.7 feet below sea level.
Find two easy points on a graph and go over however many times you need to rise and how many times to you run.
<u>Given</u>:
The given circle with center at C. The lines AB and AD are tangents to the circle C.
The length of AB is (3x + 10)
The length of AD is (7x - 6)
We need to determine the value of x.
<u>Value of x:</u>
Since, we know the property of tangent that, "if two tangents from the same exterior point are tangent to a circle, then they are congruent".
We shall determine the value of x using the above property.
Thus, we have;
AB = AD
Substituting the values, we get;

Subtracting both sides of the equation by 7x, we get;

Subtracting both sides of the equation by 10, we get;

Dividing both sides of the equation by -4, we get;

Thus, the value of x is 4.
<span>Given: Rectangle ABCD
Prove: ∆ABD≅∆CBD
Solution:
<span> Statement Reason
</span>
ABCD is a parallelogram Rectangles are parallelograms since the definition of a parallelogram is a quadrilateral with two pairs of parallel sides.
Segment AD = Segment BC The opposite sides of a parallelogram are Segment AB = Segment CD congruent. This is a theorem about the parallelograms.
</span>∆ABD≅∆CBD SSS postulate: three sides of ΔABD is equal to the three sides of ∆CBD<span>
</span><span>Given: Rectangle ABCD
Prove: ∆ABC≅∆ADC
</span>Solution:
<span> Statement Reason
</span>
Angle A and Angle C Definition of a rectangle: A quadrilateral
are right angles with four right angles.
Angle A = Angle C Since both are right angles, they are congruent
Segment AB = Segment DC The opposite sides of a parallelogram are Segment AD = Segment BC congruent. This is a theorem about the parallelograms.
∆ABC≅∆ADC SAS postulate: two sides and included angle of ΔABC is congruent to the two sides and included angle of ∆CBD