200n because it's 2×5=10so maybe try solving the problem like that ok does that help
Answer:
- Option B) Absorbed energy results in the change in potential energy.
Explanation:
Please, find attached the graph that accompanies this question.
The<em> melting</em> proces is the change from solid phase to liquid phase. It is represented with the lower flat line with the symbol ΔHfus over it.
The line is flat because the temperature remains constant during this process. Thus, you know the option "C) As the temperature increases during melting, the kinetic energy also increases" is FALSE.
What happens during this process is:
- Most of the energy received by the particles from heating, during the melting process, goes to overcome the intermolecular bonds between the particles. This results in increasing the distance between the particles, so the internal potential energy increases. This is what the option <em>"B) Absorbed energy results in the change in potential energy" correctly describes.</em> Hence, option B) is TRUE.
Althoug most of the heat energy received is transformed into potential energy, yet a small part of the heat energy increases a bit the kinetic energy of the particles, because the particles will vibrate faster around their relatively fixed positions. Hence, the option "<em>A) The kinetic energy of the particles remains unchanged</em>" is FALSE.
As for option D) it is not reasonable at all: none chemical or physical priciple can be used to state that <em>the kinetic energy decreases as the particles move farther apart</em>. Thus, this is FALSE.
When we look at the moon from the Earth, we always see the same light spots, dark spots, and shapes. It never changes. There could be two possible reasons for this:
-- The moon is a flat disk with some markings on it, and one side of it always faces the Earth.
-- The moon is a round ball with some markings on it, and one side of it always faces the Earth.
Either way, since the same side always faces the Earth, the only way that can happen is if the moon's revolution around the Earth and rotation on its axis both take EXACTLY the same length of time.
Even if they were only one second different, then we would see the moon's whole surface over a long period of time. But we don't. So the moon's rotation and revolution must be EXACTLY locked to the same period of time.
I think the answer is B 1:100