Answer:
Please see attached image for the sketch with the labels.
Length "x" of the ramp = 11.70 ft
Step-by-step explanation:
Notice that the geometry to represent the ramp is a right angle triangle, for which we know one of its acute angles (
), and the size of the side opposite to it (4 ft). Our unknown is the hypotenuse "x" of this right angle triangle, which is the actual ramp length we need to find.
For this, we use the the "sin" function of an angle in the triangle, which is defined as the quotient between the side opposite to the angle, divided by the hypotenuse, and then solve for the unknown "x" in the equation:

Therefore the length of the ramp rounded to the nearest hundredth as requested is: 11.70 ft
X = first venture, y = second venture, z = third venture
x + y + z = 15,000
x + z = y + 7000
3x + 2y + 2z = 39,000
these are ur equations.....
x + y + z = 15,000
x - y + z = 7000
--------------------add
2x + 2z = 22,000
x + y + z = 15,000....multiply by -2
3x + 2y + 2z = 39,000
-------------------
-2x - 2y - 2z = - 30,000 (result of multiplying by -2)
3x + 2y + 2z = 39,000
------------------add
x = 9,000
2x + 2z = 22,000
2(9000) + 2z = 22000
18,000 + 2z = 22000
2z = 22000 - 18000
2z = 4000
z = 4000/2
z = 2,000
x + y + z = 15,000
9000 + y + 2000 = 15,000
11,000 + y = 15,000
y = 15,000 - 11,000
y = 4,000
first venture (x) = 9,000 <==
second venture (y) = 4,000 <==
third venture (z) = 2,000 <==
Wait sorry in fraction for it is 1000000/10