The other 2 angles of given right angles are 61.93° and 28.072°, if a triangle with side lengths 8, 15, and 17 is a right triangle by the converse of the Pythagorean Theorem.
Step-by-step explanation:
The given is,
Right angled triangle,
Side lengths are 8, 15, and 17
Step:1
The given triangle is right angle triangle by the converse of Pythagorean theorem, so the trigonometric ratio,
Ref the attachment,
For angle a,
...................................................(1)
Where, Opp - 8
Hyp - 17
From equation (1),
= 0.470588
(0.470588)
a = 28.072°
For angle b,
...................................................(1)
Where, Opp - 15
Hyp - 17
From equation (1),
= 0.882352
(0.882352)
b = 61.93°
Step:2
Check for solution for right angle triangle,
90 ° = Other 2 angles
90 ° = a + b
90 ° = 28.072° + 61.93°
90 ° = 90 °
Result:
The other 2 angles of given right angles are 61.93° and 28.07°, if a triangle with side lengths 8, 15, and 17 is a right triangle by the converse of the Pythagorean Theorem.
Answer:
The answer is either 5.26 or 5 I think its 5.26
Step-by-step explanation: The reason why I think its the two answers I said is because 10 is 10 percent of 100 so 9.5 is 9.5 percent which makes me think that
Answer:
56
Step-by-step explanation:
Answer:
0.003 but if you just put that in backwards, 345.
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
we just substitute the value of "a" given in the above expression we get
21-2(3)
21-6=15