Answer:
An element is made of atoms
Explanation:
The reason people describe water as a universal solvent is because it dissolves almost anything.
The semi will have the hardest time changing direction because of its mass. The more mass there is, the more effort it takes to accelerate and decelerate as well as change direction.
Answer:
The different types of radiation are defined by the the amount of energy found in the photons. Radio waves have photons with low energies, microwave photons have a little more energy than radio waves, infrared photons have still more, then visible, ultraviolet, X-rays, and, the most energetic of all, gamma-rays.Explanation: hope this helps god bless you
<u>Answer:</u>
<u>For a:</u> The empirical formula of the compound is 
<u>For b:</u> The empirical formula of the compound is 
<u>Explanation:</u>
We are given:
Percentage of P = 43.6 %
Percentage of O = 56.4 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of P = 43.6 g
Mass of O = 56.4 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Phosphorus =
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 1.406 moles.
For Phosphorus = 
For Oxygen = 
Converting the moles in whole number ratio by multiplying it by '2', we get:
For Phosphorus = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of P : O = 2 : 5
Hence, the empirical formula for the given compound is 
We are given:
Percentage of K = 28.7 %
Percentage of H = 1.5 %
Percentage of P = 22.8 %
Percentage of O = 56.4 %
Let the mass of compound be 100 g. So, percentages given are taken as mass.
Mass of K = 28.7 g
Mass of H = 1.5 g
Mass of P = 43.6 g
Mass of O = 56.4 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Potassium =
Moles of Hydrogen =
Moles of Phosphorus =
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.735 moles.
For Potassium = 
For Hydrogen = 
For Phosphorus = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of K : H : P : O = 1 : 2 : 1 : 4
Hence, the empirical formula for the given compound is 