Answer:
0.2 moles, assuming weight of dried salt
Explanation:
In order to determine the number of moles, we need to be aware of the mass of the substance in question.
Assuming the mass of the dehydrated
is 50g.
No. of moles = mass of substance/ molar mass of the substance.
=
= 0.2 moles moles.
The answer is 67.82 g/mol

where, E^{o} (Ag+/Ag) = std. reduction potential of Ag+ = 0.7994 v
and Sn2+/Sn = std. reduction potential of Sn2+ = -0.14 v
Thus, E^{o}cell = 0.7994v - (-0.14v) = 0.9394 v
Now, ΔG^{o} = -nF

,
where, n = number of electrons = 2
F = Faraday's constant = 96500 C
∴ΔG^{o} = 2 X 96500 X 0.9394 = -1.18 X

Now, using Nernst's Equation we have,
![[tex]E_{cell} = 0.9394 - \frac{2.303X298}{2X96500}log \frac{0.0115}{ 3.5^{2} }](https://tex.z-dn.net/?f=%20%5Btex%5DE_%7Bcell%7D%20%3D%200.9394%20-%20%5Cfrac%7B2.303X298%7D%7B2X96500%7Dlog%20%5Cfrac%7B0.0115%7D%7B%203.5%5E%7B2%7D%20%7D%20)
E_{cell} = 0.9765 v
Finally, ΔG = -nFE = -2 X 96500 X 0.9765 = -1.88 X
Answer:
GaS
Explanation:
GaS is Gallium and Sulfuric Acid.
Melting point = 965°C
Appearance: Yellow crystal
Density: 3.86 g / cm³
I hope this helps you :)