Answer:
Genes birthday is February 29th, or March 1st on a Leap Year
February has 29 days in a common year, so 24+7 is the 29th
February has 28 days in a Leap Year, so one less day would lead you to March 1st
IN ORDER TO FIND THE ANSWER:
Add up two of the values. If they are greater than the third, the lengths can make up a triangle.
3 + 9 = 12
12 > 14? No
3 + 5 = 8
8 > 7? Yes
1 + 2 = 3
3 > 3? No
4 + 4 = 8
8 > 8? No
The answer would be B.
Answer:
Option (B)
Step-by-step explanation:
There are two lines on the graph representing the system of equations.
First line passes through two points (-3, 1) and (-2, 3).
Slope of the line = 
= 
m = 2
Equation of the line passing through (x', y') and slope = m is,
y - y' = m(x - x')
Equation of the line passing through (-3, 1) and slope = 2 will be,
y - 1 = 2(x + 3)
y = 2x + 7 ----------(1)
Second line passes through (0, 1) and (-1, 4) and y-intercept 'b' of the line is 1.
Let the equation of this line is,
y = mx + b
Slope 'm' = 
= 
= -3
Here 'b' = 1
Therefore, equation of the line will be,
y = -3x + 1 ---------(2)
From equation (1) and (2),
2x + 7 = -3x + 1
5x = -6
x = 
x = 
From equation (1),
y = 2x + 7
y = 
= 
= 
= 
Therefore, exact solution of the system of equations is
.
Option (B) will be the answer.
Answer: The probability that the avg. salary of the 100 players exceeded $1 million is approximately 1.
Explanation:
Step 1: Estimate the standard error. Standard error can be calcualted by dividing the standard deviation by the square root of the sample size:

So, Standard Error is 0.08 million or $80,000.
Step 2: Next, estimate the mean is how many standard errors below the population mean $1 million.


-6.250 means that $1 million is siz standard errors away from the mean. Since, the value is too far from the bell-shaped normal distribution curve that nearly 100% of the values are greater than it.
Therefore, we can say that because 100% values are greater than it, probability that the avg. salary of the 100 players exceeded $1 million is approximately 1.
Look at it on the Internet