To find the 'maximum height' we will need to take the derivative of h(t) = –16t² + 32t + 6 then set it equal to zero, then solve for t. this t will be the time at which the ball reaches it's maximum height.
Answer: It should be y=2x-2
Step-by-step explanation:
Answer: circumference = 2Πr²
Where r= 3
Π=3.14
Therefore Circumference = 2×3.14× 3²
= 2×28.26
Circumference=56.52
Formula:
Subtitute in 3 for r.
Solve and the answer is 28.26
Answer:


Step-by-step explanation:
<u>Trigonometric Ratios
</u>
The ratios of the sides of a right triangle are called trigonometric ratios.
The longest side of the right triangle is called the hypotenuse and the other two sides are the legs.
Selecting any of the acute angles as a reference, it has an adjacent side and an opposite side. The trigonometric ratios are defined upon those sides.
The image provided shows a right triangle whose hypotenuse is given. We are required to find the value of both legs.
Let's pick the angle of 30°. Its adjacent side is y. We can use the cosine ration, which is defined as follows:


Solving for y:

Since:


Simplifying:

Now we use the sine ratio:


Solving for x:

Since:


Simplifying:

The choices are not clear, but it seems like the correct answer is C.

