Answer:
61
Step-by-step explanation:
a = 17
d = 21 - 17 = 4
12th day: 17 + 4(12 - 1)
17 + 44
61
<h3>
Answer: XWY and STR</h3>
I tend to think of parallel lines as train tracks (the metal rail part anyway). Inside the train tracks is the interior region, while outside the train tracks is the exterior region. Alternate exterior angles are found here. Specifically they are angles that are on opposite or alternate sides of the transversal cut.
Both pairs of alternate exterior angles are shown in the diagram below. They are color coded to help show how they pair up and which are congruent.
A thing to notice: choices B, C, and D all have point W as the vertex of the angles. This means that the angles somehow touch or are adjacent in some way due to this shared vertex point. However, alternate exterior angles never touch because parallel lines never do so either. We can rule out choices B,C,D from this reasoning alone. We cannot have both alternate exterior angles on the same exterior side of the train tracks. Both sides must be accounted for.
5x4 = 20
So the avocados would be $20
Answer:
Plot the points in black and connect them.
Plot the point in blue and count up 3 and to the right 1. Plot and connect the points.
Step-by-step explanation:
Using your cursor/mouse, you will first choose the color black. Then you will plot the points given to you (2,2) and (5,8) by first finding the x-coordinate of (x,y). Start at 2 on the x-axis. Follow the grid line up two units so you will also be at the 2 on the y-axis. Plot or draw a dot/circle on this grid line. Go back to the x-axis and start again at 5 on the x-axis. Follow the grid line up eight units so you will also be at the 8 on the y-axis. Plot or draw a dot/circle on this grid line. Connect the dots for your line.
Using your cursor/mouse, you will choose the color blue. Then you will plot the point given to you (10,5) by first finding the x-coordinate of (x,y). Start at 10 on the x-axis. Follow the grid line up five units so you will also be at the 5 on the y-axis. Plot or draw a dot/circle on this grid line. Instead of plotting another point. This time you will count from the blue point up three units and over to the right one. Mark this grid line as a point. Now connect them.