Answer:
1) a. False, adding a multiple of one column to another does not change the value of the determinant.
2) d. True, column-equivalent matrices are matrices that can be obtained from each other by performing elementary column operations on the other.
Step-by-step explanation:
1) If the multiple of one column of a matrix A is added to another to form matrix B then we get: |A| = |B|. Here, the value of the determinant does not change. The correct option is A
a. False, adding a multiple of one column to another does not change the value of the determinant.
2) Two matrices can be column-equivalent when one matrix is changed to the other using a sequence of elementary column operations. Correc option is d.
d. True, column-equivalent matrices are matrices that can be obtained from each other by performing elementary column operations on the other.
put your question properly
Step-by-step explanation:
Answer:
40 more inches of fabric is needed to cover the entire table.
Step-by-step explanation: you add ten inches to every end of the table
Go 3+4+2 to determine for 1 row and then multiply that by 64 so 576