1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
3 years ago
8

Help - algebra 1!!!!!!!!!!!

Mathematics
1 answer:
dimaraw [331]3 years ago
4 0

Answer:

7.4*10^-5, 7300000

Step-by-step explanation:

1 There are 4 zeros in 1

round up .0000742 to .000074

There are 5 places between 7 and the last zero, negative because it is a decimal.

2 7.3*10^6= 73 is first, 6 places after 7 so 5 zeros (6 is in a place)

You might be interested in
There are 87 first graders in after care.after 39 students are picked up, the teacher put the remaining students into 4 groups f
Elden [556K]

Answer:

There are 12 students in each group

Step-by-step explanation:

87-39= 48

48/4= 12

Hope this helped. ;)

5 0
3 years ago
Read 2 more answers
Help pls with 10 and 11
Alex
10
A) 24 ribbons

B)1/28yards

11.u have 1/2 how?

6 0
3 years ago
Note: Figure is not drawn to scale. If m1 + m2 = 134°, what is m3? A. 138° B. 49° C. 46° D. 136°
NemiM [27]

Answer:

Measure of angle 3: C (46 degrees)

Step-by-step explanation:

As there is no attachment, I will assume the question is in reference to a triangle. Knowing that a triangle contains 3 angles the answer can be retrieved through simple steps:

m∠1 + m∠2 + m∠3 = 180 degrees, by Sum of Angles in Triangle Theorem, <em>thus;</em>

Through substitution + algebra:

134 + m∠3 = 180,

m∠3 = 46 degrees

8 0
3 years ago
PLEASE HELPP!!
Rasek [7]

Answer:

Given:

Two trail maps:

Trail on the first map = 8 cm

Trail on the second map = 6 cm

Scale on first map = 1 cm : 2 km

A) What is the scale factor from the map to the actual trail?

For the first map, the scale factor is 1 cm: 2km. Therefore the actual trail is 8 centimeters * 2 kilometers = 16 km.

The scale factor of the second map is 16 km / 6 cm = 2.67 km : 1 cm

B) The length of the actual trail is 16 kilometers.

Step-by-step explanation:

3 0
3 years ago
Which expression is it equivalent to?
horrorfan [7]
Option A) Is the answer. \boxed{\mathbf{\dfrac{3f^3}{g^2}}}

For this question; You are needed to expose yourselves to popular usages of radical rules. In this we distribute the squares as one-and-a-half fractions as the squares eliminate the square roots. So, as per the use of fraction conversion from roots. It becomes relatively easy to solve and finish the whole process more quicker than everyone else. More easier to remember.

Starting this with the equation editor interpreter for mathematical expressions, LaTeX. Use of different radical rules will be mentioned in between the steps.

Radical equation provided in this query.

\mathbf{\sqrt{\dfrac{900f^6}{100g^4}}}

Divide the numbered values of 900 and 100 by cancelling the zeroes to get "9" as the final product in the next step.

\mathbf{\sqrt{\dfrac{9f^6}{g^4}}}

Imply and demonstrate the rule of radicals. In this context we will use the radical rule for fractions in which a fraction with a denominator of variable "a" representing a number or a variable, and the denominator of variable "b" representing a number or a variable are square rooted by a value of "n" where it can be a number, variable, etc. Here, the radical of "n" is distributed into the denominator as well as the numerator. Presuming the value of variable "a" and "b" to be greater than or equal to the value of zero. So, by mathematical expression it becomes:

\boxed{\mathbf{Radical \: \: Rule: \sqrt[n]{\dfrac{a}{b}} = \dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}, \: \: a \geq 0 \: \: \: b \geq 0}}

\mathbf{\therefore \quad \dfrac{\sqrt{9f^6}}{\sqrt{g^4}}}

Apply the radical exponential rule. Here, the squar rooted value of radical "n" is enclosing another variable of "a" which is raised to a power of another variable of "m", all of them can represent numbers, variables, etc. They are then converted to a fractional power, that is, they are raised to an exponent as a fractional value with variables constituting "m" and "n", for numerator and denominator places, respectively. So:

\boxed{\mathbf{Radical \: \: Rule: \sqrt[n]{a^m} = a^{\frac{m}{n}}, \: \: a \geq 0}}

\mathbf{Since, \quad \sqrt{g^4} = g^{\frac{4}{2}}}

\mathbf{\therefore \quad \dfrac{\sqrt{9f^6}}{g^2}}

Exhibit the radical rule for two given variables in this current step to separate the variable values into two new squares of variables "a" and "b" with a radical value of "n". Variables "a" and "b" being greater than or equal to zero.

\boxed{\mathbf{Radical \: \: Rule: \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}, \: \: a \geq 0 \: \: \: b \geq 0}}

So, the square roots are separated into root of 9 and a root of variable of "f" raised to the value of "6".

\mathbf{\therefore \quad \dfrac{\sqrt{9} \sqrt{f^6}}{g^2}}

Just factor out the value of "3" as 3 × 3 and join them to a raised exponent as they are having are similar Base of "3", hence, powered to a value of "2".

\mathbf{\therefore \quad \dfrac{\sqrt{3^2} \sqrt{f^6}}{g^2}}

The radical value of square root is similar to that of the exponent variable term inside the rooted enclosement. That is, similar exponential values. We apply the following radical rule for these cases for a radical value of variable "n" and an exponential value of "n" with a variable that is powered to it.

\boxed{\mathbf{Radical \: \: Rule: \sqrt[n]{a^n} = a^{\frac{n}{n}} = a}}

\mathbf{\therefore \quad \dfrac{3 \sqrt{f^6}}{g^2}}

Again, Apply the radical exponential rule. Here, the squar rooted value of radical "n" is enclosing another variable of "a" which is raised to a power of another variable of "m", all of them can represent numbers, variables, etc. They are then converted to a fractional power, that is, they are raised to an exponent as a fractional value with variables constituting "m" and "n", for numerator and denominator places, respectively. So:

\boxed{\mathbf{Radical \: \: Rule: \sqrt[n]{a^m} = a^{\frac{m}{n}}, \: \: a \geq 0}}

\mathbf{Since, \quad \sqrt{f^6} = f^{\frac{6}{2}} = f^3}

\boxed{\mathbf{\underline{\therefore \quad Required \: \: Answer: \dfrac{3f^3}{g^2}}}}

Hope it helps.
8 0
3 years ago
Other questions:
  • An environmental engineer is tasked with determining whether a power plant cooling system is heating the water it uses more than
    15·1 answer
  • The Big Bad Baseball team had lots of great hitters. Sue had a .426 batting average. Heidi had 12 hits in a 15 times a bat. Sele
    11·1 answer
  • What is the factored form of the expression k^2 - 9h^2
    10·1 answer
  • Help me solve on number 5 and 6 (solve for x)
    9·1 answer
  • A school district would like to know what type of communication ( email , txt , or phone) parents prefer . they survey the paren
    6·2 answers
  • A diver is swimming at -10m. He then descends 3 m and rises 6 m. At what new level is the diver swimming
    9·2 answers
  • The shadow of a building is 40 ft. long. The angle between the ground and the line to the sun is 35°. Draw a diagram and find th
    9·1 answer
  • If n = 5.3 cm and p = 6.25 cm, what is the measure of angle ?
    12·2 answers
  • Giving brainliest!! thanks in advance!
    13·1 answer
  • Given that the line y=ax+b passes through the points A(0; 3) and B(-2;7), how do I find the values of a and b?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!