PART 1If I have graph f(x) then graph f(x + 1/3) would translate the graph 1/3 to the left.
For example, I have f(x) = x².Then
f(x + 1/3) = (x + 1/3)²
I draw the graph of f(x) = x² and the graph of f(x) = (x + 1/3)² on cartesian plane to know what's the difference between them.
PART 2If I have graph f(x) then graph f(x) + 1/3 would translate the graph 1/3 upper.
For example, I have f(x) = x².Then
f(x) + 1/3 = x² + 1/3
I draw the graph of f(x) = x² and the graph of f(x) = x² + 1/3 on cartesian plane to know what's the difference between them.
SUMMARY
f(x+1/3) ⇒⇒ <span>f(x) is translated 1/3 units left.
f(x) + 1/3 </span>⇒⇒ <span>f(x) is translated 1/3 units up.</span>
X= -b over 2a = --6 over 2×1=3
y=3²-6(3)-7=-16
vertex is (3,-16)
axis of symmetry is 3
The graph that represents the inequality has been shown in the attachment.
<h3>How to solve for the graph</h3>
We have these equations
y ≤ −3x + 1
y ≤ x + 3
We remove the inequality sign from both of these equations
y = −3x + 1
y = x + 3
−3x + 1 = x + 3
such that
x = -0.5
we use this value for x in any of the equations
x + 3 = -0.5 + 3
= 2.5
the point of intersection is at 2.5, -0.5
we test for the origin. 0,0
3x + 1
= 3*0 + 1
= 1
for x + 3
0+3 = 3
This is 0≤1 and 0≤3
Hence the graph should be shaded to the origin.
Read more on a graph here: brainly.com/question/14030149
#SPJ1
the end behavior of the function f(x)
the function f(x) must has odd number of roots ( where the graph of a function intersects the x-axis
the width cant be negative so the width of the rectangle would be 8 inches
Answer:
1:49
2:62
Step-by-step explanation:
it mightbe wrong idk