Answer:
If the frequency of the motion of a simple harmonic oscillator is doubled , then maximum speed of the oscillator changes by the factor 2
Explanation:
We know that in a simple harmonic oscillator the maximum speed is given by
= 
Here A is amplitude which is constant , so from above equation we see that maximum speed is directly proportional to
of the oscillation .
Since 
= 2
Where
is the maximum speed when frequency is doubled .
They discovered a vaccine to reduce illnesses, specifically Polio and Influenza. The work of Salk and Sabin has almost eradicated what was once a deadly disesase ( polio) . For example, there were 350,000 deaths related to poliovirus across the world in 1988 and they reduced to 22 in 2017. Also, their work has saved millions of lives from polio induced paralysis
Answer:
The speed of the ball was, v = 3 m/s
Explanation:
Given data,
The time period of the ball, t = 8 s
The distance the ball rolled, d = 24 m
The velocity of an object is defined as the object's displacement to the time taken. The formula for the velocity is,
v = d / t m/s
Substituting the given values in the above equation,
v = 24 / 8
= 3 m/s
Hence, the speed of the ball was, v = 3 m/s
Answer:
The correct answer to that question is HENRY
Answer:
A) d = 11.8m
B) d = 4.293 m
Explanation:
A) We are told that the angle of incidence;θ_i = 70°.
Now, if refraction doesn't occur, the angle of the light continues to be 70° in the water relative to the normal. Thus;
tan 70° = d/4.3m
Where d is the distance from point B at which the laser beam would strike the lakebottom.
So,d = 4.3*tan70
d = 11.8m
B) Since the light is moving from air (n1=1.00) to water (n2=1.33), we can use Snell's law to find the angle of refraction(θ_r)
So,
n1*sinθ_i = n2*sinθ_r
Thus; sinθ_r = (n1*sinθ_i)/n2
sinθ_r = (1 * sin70)/1.33
sinθ_r = 0.7065
θ_r = sin^(-1)0.7065
θ_r = 44.95°
Thus; xonsidering refraction, distance from point B at which the laser beam strikes the lake-bottom is calculated from;
d = 4.3 tan44.95
d = 4.293 m