The work done by the three students is 3,000 J.
The energy transferred in the process is 3,000 J.
<h3>What is work done?</h3>
- Work done is the product of force and distance moved by the object.
W = Fd
The work done by the three students is calculated as follows;
W = 300 x 10
W = 3,000 J
<h3>What is energy transfer?</h3>
- This is means by which energy is converted from one form to another.
The energy transferred in the process is determined by work energy theorem.
E = W
E = 3,000 J
Learn more about work-energy theorem here: brainly.com/question/22236101
Power = voltage(V) * current(I)
= 120 * 0.5
Power = 60 watts
Answer:
I = 4.75 A
Explanation:
To find the current in the wire you use the following relation:
(1)
E: electric field E(t)=0.0004t2−0.0001t+0.0004
ρ: resistivity of the material = 2.75×10−8 ohm-meters
J: current density
The current density is also given by:
(2)
I: current
A: cross area of the wire = π(d/2)^2
d: diameter of the wire = 0.205 cm = 0.00205 m
You replace the equation (2) into the equation (1), and you solve for the current I:

Next, you replace for all variables:

hence, the current in the wire is 4.75A
Hello!

Remember that impulse is equivalent to:
Impulse = force (N) × time (s)
Plug in the given force and time:
Impulse = 25 × 32
Impulse = 800 Ns
Answer:54 kj
Explanation:P1 = P2 = 1000 kPa
1Q2 = 84 kJ
1W2 = P1 (V2 – V1)
= 1000 (0.06 – 0.03) = 30 kJ
1Q2 = 1W2 + 1U2
U2 – U1= 1Q2 – 1W2 = 84 – 30 = 54 kJ