Answer:
In free fall, mass is not relevant and there's no air resistance, so the acceleration the object is experimenting will be equal to the gravity exerted. If the object is falling on our planet, the value of gravity is approximately 9.81ms2 .
Answer:
Cost of 1000 kilowatt hour = 6000 cents
Explanation:
Given that
Electricity cost is 6 cents per kilowatt hour.
And we have to found out the cost for one megawatt hour
We know that
1 kilowatt = 1000 watt
1 megawatt = = 1000000 watt
1 megawatt = 1000 kilowatt
1 megawatt hour = 1000 kilowatt hour
Given that cost of 1 kilowatt hour = 6 cents
So the cost of 1000 kilowatt hour = 6 x 1000 cents
Cost of 1000 kilowatt hour = 6000 cents
Answer:
Explanation:
Galaxies are in constant motion with respect to each other . For example Andromeda galaxy is approaching our galaxy ( milky way ) at about 110 km /s . So we will observe blue shift in the spectrum of radiation coming from this galaxy . In this way, we can distinguish between radiation coming from our galaxy and that coming from other galaxy . Spectrum of radiation coming from other galaxy must have either red or blue shift .
Answer:
Circuit one will have more current than circuit two
Explanation:
I am assuming that you have to see which circuit has the greater current in this case. Well, this is the perfect example of Ohm's Law, which states the following -
V = IR,
where V = voltage / potential difference, I = current, and R = resistance
If one circuit has twice the voltage and half the resistance of the second circuit, as voltage is directly proportional to the resistance -
2V = I( 1 / 2R ),
4V = IR,
I = 4V / R
Whereas in the second circuit -
V = IR,
I = V / R
As you can note, voltage is directly proportional to the current ( I ) as well as the resistance. The only difference between the two formulas I = 4V / R, and I = V / R is the difference in the voltage. With the voltage being 4 times greater in the first circuit, and current is 4 times greater in the first circuit as well.
<u><em>Hence, circuit one will have more current than circuit two</em></u>
Let N be the normal force that forces the person against the wall.
Then u N = m g is the frictional force supporting the person's weight
and N = m g / u
also, N = m v^2 / R is the normal force providing the centripetal acceleration
So, m g / u = m v^2 / R
v^2 = g R / u
since v = 2 pi R T
4 pi^2 R^2 T^2 = g R / u and T^2 = g / (4 u pi^2 R)
T = 1/ (2 pi) (g /(u R))^1/2 = .159 * (9.8 m/s^2 / (.521 * 4.4 m)) ^1/2
T = .68 / s
Do you see any thing wrong here?
T should have units of seconds not 1 / seconds
v should be 2 * pi * R / T where T is the time for 1 revolution
So you need to make that correction in the above formula for v.