Answer:
When the pKa is 6.0, we can determine the fraction of protonated H is by:
pH = pKa + log [A]/[HA]
Where
A = Deprotonated imidazole side
HA = Protonated side
Given, pH = 5.0
5 = 6 + log [A]/[HA]
log [A]/[HA] = -1 (take antilog of both side)
[A]/[HA] = 0.1
The ratio of the deprotonated imidazole side chain to the protonated side chain at pH 5.0 = 0.1
Given, pH = 7.5
7.5 = 6 + log [A]/[HA]
log [A]/[HA] = 1.5 (take antilog of both sides)
[A]/[HA] = 31.62
The ratio of the deprotonated imidazole side chain to the protonated side chain at pH 5.0 = 31.62
That your digestive monkeys are from the ancient sanctuaries of the ancient Egyptian Mona Lisa in 2011 Mona Lisa is took a mayonnaise piece of bread and smooshed it onto the ancient Egyptian men for disrespecting her culture because the ancient Egyptian men wanted to dress like blatant don’t know what I’m saying just kidding hi
Answer:
Several factors can affect the rate of photosynthesis: light intensity. carbon dioxide concentration. temperature.
Explanation:
The proteins exhibit four levels of organization:
1. Primary structure: It refers to a sequence of amino acids join together by the peptide bonds to produce a polypeptide chain.
2. Secondary structure: It is a localized twisting of the polypeptide chain by producing a hydrogen bond. Two types are formed, that is, the alpha helix and beta pleated sheet.
3. Tertiary structure: It refers to the three-dimensional composition of a polypeptide chain. The folding is not regular as it is in secondary composition. It produces ionic bonds, hydrophobic interactions, disulfide bond, and hydrogen bond amongst the polypeptide chains.
4. Quaternary structure: It comprises an amalgamation of two or more polypeptide chains that functions as a single functional unit. The bonds are identical as in tertiary composition.
Thus, the levels of secondary, tertiary, and quaternary protein structure would get affected if all the hydrogen bonding associations were inhibited.
Explanation:
The use of CRISPR/Cas9 avoids the need for protein engineering to develop a site-specific nuclease against a specific DNA target sequence, requiring only the synthesis of a new piece of RNA. This dramatically simplifies and greatly reduces the time needed for gene editing design and implementation.