Answer:
The electrochemical proton gradient across the inner mitochondrial membrane is used to drive ATP synthesis in the critical process of oxidative phosphorylation. This is made possible by the membrane-bound enzyme ATP synthase, mentioned previously.
The resulting mice will be induced with the changed gene either on or off. The offspring will have altered genes if both the alleles have the trait. This is a heritable change.
Explanation:
Making gene on or off is a process of gene regulation when one of the gene is methylated or histone modification to prevent access to transcription factors hence no expression of the protein. This process is called epigenetics.
The resulting progeny in mice will receive the allele of on or off the gene. Such genes with altered allele are also called as
The altered genes will be expressed in the resulting progeny of mice.
The epigenetic genes can be reverted with environmental effects in the offspring paramutable alleles. They are heritable.
Answer:
a) when cells are small the movement of food and waste can be efficiently handled by the cell membrane
Explanation:
Cells need to get their nutrients and waste in and out of their cell membrane every quickly. Cells are hard workers anyway! The other options also don't make much sense. The cell shape doesn't mean much to their function, and size doesn't impact shape. The cell's internal parts (mitochondria, vacuole, etc) don't support the cell membrane, they have their own functions to focus on. Cells don't work together in tissue but they can interact with each other when needed.
Experimental Setup In this section you describe how the experiment was done and summarize the data taken. One typically describes the instruments and detectors used in this section.