1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
3 years ago
13

you baby-sit for 7.50 per hour and get a 4 dollar tip. your earnings E are a function of the number of hours H you baby-sit. wri

te an equation using function notation that will represent the situation. how much money do you male if you baby-sit for 6 hours?
Mathematics
1 answer:
docker41 [41]3 years ago
8 0

7.5+4x6

4x6=24

24+7.5=31.5




You might be interested in
1920.2923 in expanded form and in words
STALIN [3.7K]

Answer:

1,000  

+ 900  

+ 20  

+ 0  

+   0.2

+   0.09

+   0.002

+   0.0003

Step-by-step explanation:

one thousand nine hundred twenty and two thousand nine hundred twenty-three ten-thousandths

3 0
3 years ago
I need help!!!
BaLLatris [955]

(1) -6 x + 8 x = -46 Answer = -23

(2) w + 3/4 = w - 2/2 Answer = {}

(3) 2 x + 16 = 3(x - 9) Answer = 43

(4) Answer D)

(5) -3 x + 4 = -8 Answer x = 4

(6) C)

(7) B)

(8) C)

(9) x + 3/5=2 Answer x = 7/5

(10) 4 - 2 x = 10 Answer x=  = -3

If something is wrong apologize, I hope it helps.


6 0
3 years ago
I ned helk with 41+28 ​
expeople1 [14]

Answer:

41+28=69

Step-by-step explanation:

Add the tens values: 40 + 20 = 60

Add the ones values: 1 + 8 = 9

Combine: 60 + 9 = 69

8 0
2 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
1×12 2×11<br>what is itor
Sergeu [11.5K]

1 Simplify

1×12



12×(2×11)



2 Simplify

2×11

12×22



3 Simplify


264



or


1 x 12 x 2 x 11 =

[Answer] 264

6 0
4 years ago
Other questions:
  • A ship is anchored off a long straight shoreline that runs north and south. From two observation points 16 miles apart on shore,
    5·1 answer
  • An object is dropped off a building that us 144 feet tall. After how many seconds does the object hit the ground? (s= 16t^2)
    15·2 answers
  • Typically seven out of every 100 babies bom in the River Creek hospital have a birth defect, most of
    13·1 answer
  • P(5,-3) Q(2,4) find distance​
    12·1 answer
  • Solve for x in the equation x^2 + 10x + 12 = 36. x = –12 or x = 2 x = –11 or x = 1 x = –2 or x = 12 x = –1 or x = 11
    8·2 answers
  • Guys I need help so pleaseeee I give brainliest
    6·1 answer
  • Mohamed surveyed his class on their favorite candy bar. 8 picked Snickers. 6 picked Kit Kats. 6 picked Milky Ways. If he applied
    8·1 answer
  • Write an algebraic expression for the situation. 7 less than the quotient of y divided by 4
    7·2 answers
  • Which problem situation corresponds to<br> the equation 2.85 = 1.35 + 0.75x?
    9·1 answer
  • PLEASE HELP I GIVE 95 POINTS
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!