1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
4 years ago
12

What is the truth value for the following conditional statement? p: true q: false p → q T F → F T F → T F T → T F F → T

Mathematics
2 answers:
vodka [1.7K]4 years ago
7 0

I'm pretty sure it's TF->T

Daniel [21]4 years ago
5 0

the answer would be  true

You might be interested in
What line represents the relationship
svetoff [14.1K]

r are increasing and s are increasing, therefore the second graph or third graph. For r = 0 → s = 10.

Therefore your answer is second graph.

8 0
3 years ago
To make 100g of jam you need 41g of strawberries, 29g of blackberries and the rest should be sugar. What is the ratio of blackbe
vladimir2022 [97]

Answer:

The ratio is 29:30

Step-by-step explanation:

First, we need to calculate the mass of sugar in the mix

That would be 100-41-29 = 100-70 = 30g

So the ratio of blackberry to sugar would be mass of the blackberry : mass of sugar

From the question, mass of blackberry = 29g while the mass of sugar = 30g

Mass of blackberry to mass of sugar = 29:30

3 0
3 years ago
Order these fractions from least<br>to greatest.<br>2/30, 2/5, 2/4<br>​
zavuch27 [327]

Answer:

From least to greatest is 2/30, 2/5, 2/4

<em>Hope I Helped</em>

7 0
3 years ago
Read 2 more answers
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Sindhu’s present age is thrice of Shilpa. If Shilpa’s age three years ago was x, then Sindhu’s present age is
Rudiy27

Answer:

I think "D"- 3(x + 3)

Step-by-step explanation:

as  3 years ago - x

so present age of shilpa  - x +3

~~~~~~~~~~~~~

present age  of sindhu - 3 (x+3)

i guess : )

7 0
3 years ago
Read 2 more answers
Other questions:
  • A line with a slope of -10 passes through the points of (10, -7) and (9,j) what is the value of j?
    11·1 answer
  • How do you convert 15 ft to cm
    13·2 answers
  • Please answer these questions
    9·1 answer
  • The length of a rectangular rug is 4 feet less than twice its width. The perimeter of the rug is 40 feet. Write a system of equa
    8·1 answer
  • An automobile club reported that the average price of regular gasoline in a certain state was ​$2.61 per gallon. The following d
    8·1 answer
  • 40•1/5•3+8÷2<br><br>Simplify the Expression
    12·1 answer
  • A)
    11·1 answer
  • Consider the functions f(x) = 10^x and g(x)= f(x+4)
    6·1 answer
  • Can someone help me with this question
    15·1 answer
  • A new car is purchased for 27,000 dollars. The value of the car depreciates at a rate of 6% per year. Which equation represents
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!