Answer:
0
Step-by-step explanation:
54m² - 54m² = 0
Water is 0
Answer:
p=i/rt
Step-by-step explanation:
its p= i over rt
Answer:
(1) 2 (2) (-1/2,0) (3) (0,1)
Step-by-step explanation:
The slope of the line is the number times x. This equation is y=mx+b, where m is the slope and b is the y-intercept. In this case, m is 2, so we have our slope. The y-intercept is easy, as we already know it to be (0,1). The x-intercept is the point where the line hits x when y=0. To solve for the x-intercept, we set y to 0 and solve. We have 0=2x+1. First, we subtract 1 from both sides and get -1=2x. Next, to get x by itself, divide both sides by 2. Now we have -1/2=x. Now we have our x coordinate for our x-intercept. Because of this, we get (-1/2,0) as our x-intercept.
Prove we are to prove 4(coshx)^3 - 3(coshx) we are asked to prove 4(coshx)^3 - 3(coshx) to be equal to cosh 3x
= 4(e^x+e^(-x))^3/8 - 3(e^x+e^(-x))/2 = e^3x /2 +3e^x /2 + 3e^(-x) /2 + e^(-3x) /2 - 3(e^x+e^(-x))/2 = e^(3x) /2 + e^(-3x) /2 = cosh(3x) = LHS Since y = cosh x satisfies the equation if we replace the "2" with cosh3x, we require cosh 3x = 2 for the solution to work.
i.e. e^(3x)/2 + e^(-3x)/2 = 2
Setting e^(3x) = u, we have u^2 + 1 - 4u = 0
u = (4 + sqrt(12)) / 2 = 2 + sqrt(3), so x = ln((2+sqrt(3))/2) /3, Or u = (4 - sqrt(12)) / 2 = 2 - sqrt(3), so x = ln((2-sqrt(3))/2) /3,
Therefore, y = cosh x = e^(ln((2+sqrt(3))/2) /3) /2 + e^(-ln((2+sqrt(3))/2) /3) /2 = (2+sqrt(3))^(1/3) / 2 + (-2-sqrt(3))^(1/3) to be equ
= 4(e^x+e^(-x))^3/8 - 3(e^x+e^(-x))/2
= e^3x /2 +3e^x /2 + 3e^(-x) /2 + e^(-3x) /2 - 3(e^x+e^(-x))/2
= e^(3x) /2 + e^(-3x) /2
= cosh(3x)
= LHS
<span>Therefore, because y = cosh x satisfies the equation IF we replace the "2" with cosh3x, we require cosh 3x = 2 for the solution to work. </span>
i.e. e^(3x)/2 + e^(-3x)/2 = 2
Setting e^(3x) = u, we have u^2 + 1 - 4u = 0
u = (4 + sqrt(12)) / 2 = 2 + sqrt(3), so x = ln((2+sqrt(3))/2) /3,
Or u = (4 - sqrt(12)) / 2 = 2 - sqrt(3), so x = ln((2-sqrt(3))/2) /3,
Therefore, y = cosh x = e^(ln((2+sqrt(3))/2) /3) /2 + e^(-ln((2+sqrt(3))/2) /3) /2
= (2+sqrt(3))^(1/3) / 2 + (-2-sqrt(3))^(1/3)