Answer:
B
Step-by-step explanation:
Start by writing the ratios equal to each other since they are equivalent.

Notice if you divide 21/3 = 7. Since they are equa then x/3=10. What number divided by 3 equals 10? x=30
Answer:
OPTION C
Step-by-step explanation:
IN OPT. A- 2 IS MULTIPLED IN EACH NO.
IN OPT.B-2 IS MULTIPLED
IN OPT.D-1 IS ADDED
IN OPT.E-2 IS ADDED
Check the picture below.
bear in mind that, the "bases" are the two parallel sides, and the height is the distance between them.
![\bf \textit{area of this trapezoid}\\\\ A=\cfrac{AB(BC+AD)}{2}\\\\ -------------------------------\\\\ \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ -1}}\quad ,&{{ 5}})\quad % (c,d B&({{ 3}}\quad ,&{{ 2}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ AB=\sqrt{[3-(-1)]^2+[2-5]^2}\implies AB=\sqrt{(3+1)^2+(2-5)^2} \\\\\\ AB=\sqrt{16+9}\implies AB=\sqrt{25}\implies \boxed{AB=5}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20this%20trapezoid%7D%5C%5C%5C%5C%0AA%3D%5Ccfrac%7BAB%28BC%2BAD%29%7D%7B2%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AA%26%28%7B%7B%20-1%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%0AB%26%28%7B%7B%203%7D%7D%5Cquad%20%2C%26%7B%7B%202%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B%5B3-%28-1%29%5D%5E2%2B%5B2-5%5D%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B%283%2B1%29%5E2%2B%282-5%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B16%2B9%7D%5Cimplies%20AB%3D%5Csqrt%7B25%7D%5Cimplies%20%5Cboxed%7BAB%3D5%7D)

![\bf -------------------------------\\\\ \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ -1}}\quad ,&{{ 5}})\quad % (c,d D&({{ -13}}\quad ,&{{ -11}}) \end{array} \\\\\\ AD=\sqrt{[-13-(-1)]^2+[-11-5]^2} \\\\\\ AD=\sqrt{(-13+1)^2+(-16)^2}\implies AD=\sqrt{144+256} \\\\\\ AD=\sqrt{400}\implies \boxed{AD=\sqrt{20}}](https://tex.z-dn.net/?f=%5Cbf%20-------------------------------%5C%5C%5C%5C%0A%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AA%26%28%7B%7B%20-1%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%0AD%26%28%7B%7B%20-13%7D%7D%5Cquad%20%2C%26%7B%7B%20-11%7D%7D%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0AAD%3D%5Csqrt%7B%5B-13-%28-1%29%5D%5E2%2B%5B-11-5%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAD%3D%5Csqrt%7B%28-13%2B1%29%5E2%2B%28-16%29%5E2%7D%5Cimplies%20AD%3D%5Csqrt%7B144%2B256%7D%0A%5C%5C%5C%5C%5C%5C%0AAD%3D%5Csqrt%7B400%7D%5Cimplies%20%5Cboxed%7BAD%3D%5Csqrt%7B20%7D%7D)
so, the area for this trapezoid is then
Answer:
B
Step-by-step explanation:
B
Answer/Step-by-step explanation:
The length of the boxes and whiskers of a box plot tells us more about the spread the data being represented is and as well as the shape of the spread.
Invariably, if the length of the left box and left whiskers is of the same length as the right box and right whiskers, this implies that the distribution of the data point is close to being symmetric, or approximately symmetrical.