Hey there!

Firstly, we are going
add 
on each of the sides that we're working with. like ↓

This gives us

(if you are wondering how we got the out come of

it is because I
added 
Now
multiply 
on each of your sides
Cancel the first set and you will find the value of

Good luck on your assignment and enjoy your day ~
The answer is Commutative Property.
Answer:
Please check the explanation.
Step-by-step explanation:
Given
a)
f(x) + g(x) = (2x - 1) + (2 - x)
= 2x -1 + 2 - x
= x + 1
b)
f(x) - g(x) = (2x - 1) - (2 - x)
= 2x - 1 - 2 + x
= 3x - 3
c)
g(-5) - f(-5)
Putting x = -5 in g(x) = 2 - x
g(x) = 2 - x
g(-5) = 2 - (-5) = 2+5 = 7
Putting x = -5 in f(x) = 2x - 1
f(x) = 2x - 1
f(-5) = 2(-5) - 1
= -10 - 1
= -11
Thus,
g(-5) - f(-5) = 7 - (-11) = 7+11 = 18
d)
f(x).g(x) = (2x - 1) (2 - x) = -2x² + 5x - 2
e)
f(g(x)) = f(2-x)
= 2(2-x)-1
= 4-2x-1
= 3-2x
The point ends up being ( 1, -1) and if you're graphing it you would put a dot on 1 and -1 on your graph and put a line connecting them (hope this helps)
Let's divide the shaded region into two areas:
area 1: x = 0 ---> x = 2
ares 2: x = 2 ---> x = 4
In area 1, we need to find the area under g(x) = x and in area 2, we need to find the area between g(x) = x and f(x) = (x - 2)^2. Now let's set up the integrals needed to find the areas.
Area 1:

Area 2:





Therefore, the area of the shaded portion of the graph is
A = A1 + A2 = 5.34