Answer:
P=361.91 KN
Explanation:
given data:
brackets and head of the screw are made of material with T_fail=120 Mpa
safety factor is F.S=2.5
maximum value of force P=??
<em>solution:</em>
to find the shear stress
T_allow=T_fail/F.S
=120 Mpa/2.5
=48 Mpa
we know that,
V=P
<u>Area for shear head:</u>
A(head)=π×d×t
=π×0.04×0.075
=0.003×πm^2
<u>Area for plate:</u>
A(plate)=π×d×t
=π×0.08×0.03
=0.0024×πm^2
now we have to find shear stress for both head and plate
<u>For head:</u>
T_allow=V/A(head)
48 Mpa=P/0.003×π ..(V=P)
P =48 Mpa×0.003×π
=452.16 KN
<u>For plate:</u>
T_allow=V/A(plate)
48 Mpa=P/0.0024×π ..(V=P)
P =48 Mpa×0.0024×π
=361.91 KN
the boundary load is obtained as the minimum value of force P for all three cases. so the solution is
P=361.91 KN
note:
find the attached pic
Answer:
33.56 ft^3/sec.in
Explanation:
Duration = 6 hours
drainage area = 185 mi^2
constant baseflow = 550 cfs
<u>Derive the unit hydrograph using the inverse procedure </u>
first step : calculate for the volume of direct runoff hydrograph using the details in table 2 attached below
Vdrh = sum of drh * duration
= 29700 * 6 hours ( 216000 secs )
= 641,520,000 ft^3.
next step : Calculate the volume of runoff in equivalent depth
Vdrh / Area = 641,520,000 / 185 mi^2
= 1.49 in
Finally derive the unit hydrograph
Unit of hydrograph = drh / volume of runoff in equivalent depth
= 50 ft^3 / 1.49 in = 33.56 ft^3/sec.in
Answer:
Define Variables and Use List methods to do the following
Explanation:
#<em>Conjoins two lists together</em>
all_names = male_names.union(female_names)
#<em>Finds the names that appear in both lists, just returns those</em>
neutral_names = male_names.intersection(female_names)
#<em>Returns names that are NOT in both lists</em>
specific_names = male_names.symmetric_difference(female_names)