1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
3 years ago
10

How does increasing the amount of charge on an object affect the electric force it exerts on another charged object?

Physics
1 answer:
gregori [183]3 years ago
4 0

Hi Mandy!

Question - How does increasing the amount of charge on an object affect the electric force it exerts on another charged object?

Answer - The electric force increases because the amount of charge has a direct relationship to the force.

Why - The affect that the force exerts on another object that is also charge is becase the fact that when the electric force increases is when the charge is direct with the object with the force.

Hope This Helps :)

You might be interested in
Three point charges, two positive and one negative, each having a magnitude of 20 C are placed at the vertices of an equilateral
Daniel [21]

The resultant force on the positive charge  is mathematically given as

X=40N

<h3>What is the magnitude of the electrostatic force on the negative charge?</h3>

Question Parameters:

Three-point charges, two positive and one negative, each having a magnitude of 20

Generally, the -ve charge   is mathematically given as

Q+=\sqrt{x^2+x^2+2x.xcos120}\\\\Q+=\sqrt{2x^2+2x*(1/2)}

Q+=X

Therefore

x=\frac{Kq1q2}{r2}\\\\x=\frac{9*10^9*20*10^{-6}*20*10^{-6}}{(30*10^-2)^2}

X=40N

For more information on Force

brainly.com/question/26115859

5 0
2 years ago
A box is moving along the x-axis and its position varies in time according to the expression:
Colt1911 [192]

Answer:

38.4 m/s

Explanation:

a) at t = 3.2s. x = 6 * 3.2^2 = 61.44 m

b) at t = 3.2 + Δt. x = 6*(3.2 + \Delta t)^2

c) As Δt approaches 0. We can find the velocity by the ratio of Δx/Δt

v = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{\Delta t}

v = \frac{6*(3.2 + \Delta t)^2 - 61.44}{\Delta t}

v = \frac{6(3.2^2 + 6.4\Delta t + \Delta t^2) - 61.44}{\Delta t}

v = \frac{61.44 + 38.4\Delta t + \Delta t^2 - 61.44}{\Delta t}

v = \frac{\Delta t(38.4 + \Delta t)}{\Delta t}

v = 38.4 + \Delta t

As Δt approaches 0, v = 38.4 + 0 = 38.4 m/s

3 0
3 years ago
A runner starts from rest and in 3 s reaches a speed of 8 m/s. If we assume that the speed changed at a constant rate (constant
Stells [14]

Answer:

The average speed of the runner is 4 m/s.

Explanation:

Hi there!

The average speed (a.s) is calculated by dividing the traveled distance (d) over the time needed to travel that distance (t):

a.s = d / t

So, let´s find the distance traveled in those 3 s. For that, we can use the equation of position of an object moving in a straight line with constant acceleration:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the object at time t.

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

If we place the origin of the frame of reference at the point where the runner starts, then, x0 = 0. Since the runner starts from rest, v0 = 0. So, the equation gets reduced to this:

x = 1/2 · a · t²

We have the time (3 s), so let´s find the acceleration. For that, we can use the equation of velocity of an object moving in a straight line with constant acceleration:

v = v0 + a · t

Where "v" is the velocity at a time "t". Since v0 = 0, then:

v = a · t

At t = 3 s, v = 8 m/s

8 m/s = a · 3 s

8/3 m/s² = a

So let´s find the position of the runner at t = 3 s (In this case, the position of the runner will be equal to the traveled distance):

x = 1/2 · a · t²

x = 1/2 · 8/3 m/s² · (3 s)²

x = 12 m

Now, we can calcualte the average speed:

a.s = d/t

a.s = 12 m / 3 s

a.s = 4 m/s

The average speed of the runner is 4 m/s.

4 0
3 years ago
The melting point of pure water is _____.<br><br> 32°C<br><br> 100°C<br><br> 0°C<br><br> 212°C
BabaBlast [244]

Answer:

0°C and 32°F

Explanation:

ihavetotypemoresouhyeahig

3 0
3 years ago
Read 2 more answers
A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed
Vladimir [108]

Answer:

we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level

for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.

Explanation:

A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?

It decreases in speed on its way down and increases in speed on its way down.

it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center

.It increases in speed on his way down because its under the influence of gravity

from newton's equation of motion we can check by

using V^2=u^2+2as

we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level

for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.

5 0
3 years ago
Other questions:
  • What is the displacement current in the capacitor if the potential difference across the capacitor is increasing at 500
    12·1 answer
  • Relate 1 k w h and unit of energy
    9·1 answer
  • The principal limitation of wind power is unpredictability. Please select the best answer from the choices provided
    13·2 answers
  • Nevermindddddddddddd
    9·1 answer
  • What two forms might terraces take when they become part of a continent
    15·1 answer
  • Thirty-five percent of all school-age pedestrians killed in school transportation-related crashes were between the ages of
    12·1 answer
  • According to a general theory of crime, individuals who engage in crime are also likely to engage in other risky behaviors, for
    9·1 answer
  • WILL GIVE BRAINLEIST!!! PLEAAE HLEPNME
    9·2 answers
  • determine the longest wavelength of light required to remove an electron from a sample of potassium metal, if the binding energy
    9·1 answer
  • 1. A Passenger car (m= 10.0 kg) and a flat car (m= 7.5 kg) collide and move off as
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!