Answer:
The angular frequency of the block is ω = 5.64 rad/s
Explanation:
The speed of the block v = rω where r = amplitude of the oscillation and ω = angular frequency of the oscillation.
Now ω = v/r since v = speed of the block = 62 cm/s and r = the amplitude of the oscillation = 11 cm.
The angular frequency of the oscillation ω is
ω = v/r
ω = 62 cm/s ÷ 11 cm
ω = 5.64 rad/s
So, the angular frequency of the block is ω = 5.64 rad/s
Answer is b that is Heat energy from below the ground converts water to steam to drive a steam turbine attached to an electrical generator.. .
This is a uniform rectilinear motion (MRU) exercise.
To start solving this exercise, we obtain the following data:
<h3><u>
Data:</u></h3>
- v = 4.6 m/s
- d = ¿?
- t = 10 sec
To calculate distance, speed is multiplied by time.
We apply the following formula: d = v * t.
We substitute the data in the formula: the <u>speed is equal to 4.6 m/s,</u> the <u>time is equal to 10 s</u>, which is left as follows:


Therefore, the speed at 10 seconds is 46 meters.

The Mercury's mass for the given acceleration due to gravity is 0.3152 x 10²⁴ kg.
The ratio of the calculated and accepted value of the Mercury's mass is 0.95.
<h3>What is mass?</h3>
Mass is the amount of matter present in the object.
The mass of the object is always constant, anywhere it is on the Earth or Moon or any other planet.
Given is the acceleration due to gravity of Mercury planet at North pole is g = 3.698 m/s² and the radius of Mercury planet is 2440 km.
The acceleration due to gravity is related with mass as
g = GM/R²
Substitute the values, we have
3.698 = 6.67 x 10⁻¹¹ x M/(2440 x1000)³
M = 2.2016 x 10¹³ / 6.67 x 10⁻¹¹
M = 0.3152 x 10²⁴ kg
Thus, the mercury's mass is 0.3152 x 10²⁴ kg.
(b) Accepted value of Mercury's mass is 3.301 x 10²³ kg
Ratio of the value of mass calculated and accepted is
Mcalc/M accep = 0.3152 x 10²⁴ kg / 3.301 x 10²³ kg
= 0.95
Thus, the ratio is 0.95
Learn more about mass.
brainly.com/question/19694949
#SPJ1
An atomic mass unit (symbolized AMU or amu) is defined as precisely 1/12 the mass of an atom of carbon-12. The carbon-12 (C-12) atom has six protons and six neutrons in its nucleus.