Looking for the area of a regular figure would be taking the longest side and the shortest side and multiply
Answer:

Step-by-step explanation:
Well we can simplify the numerator, by multiplying the 4 by the 6 and the m^3 and m^4 (add the exponents, explained in one of my previous answers I think)
This gives us the fraction: 
We can now divide the m^7 by m^2 by subtracting the exponents, and the reason why this works, is you're simply cancelling out the m's, If we express this in expanded form we have the following fraction: 
Since there is two m's in the denominator and there is also two (more than two) m's in the numerator, we can cancel those two m's out, and we get the fraction:
which can be simplified in exponent form as:
, now all we have to do is divide the 24 by the 3, to get 8
This gives us the answer: 
A. Robert purchased a 36-inch piece of wood
Answer:
2. The change in expected height for every one additional centimeter of femur length.
Step-by-step explanation:
<u>1. The expected height for someone with a femur length of 65 centimeters.</u>
<em>Doesn't make sense, that would be height value when centimeters = 65.</em>
<u>2</u><u><em>. </em></u><u>The change in expected height for every one additional centimeter of femur length.</u>
<em>Makes sense, for every increase in one additional centimeter, we can expect the height to be proportional to the slope.</em>
<u>3. The femur length for someone with an expected height of 2.5 centimeters.</u>
<em>Doesn't make sense, the linear relationship relies on the femur length to get the height.</em>
<u>4. The change in expected femur length for every one additional centimeter of height.</u>
<em>Doesn't make sense, again, the linear relationship relies on the femur length.</em>