1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OverLord2011 [107]
3 years ago
7

(85pts)

Mathematics
1 answer:
RUDIKE [14]3 years ago
8 0

Step-by-step explanation:

1. The first step has 1 block.  The second step has 2 blocks.  The third step has 3 blocks.  So the nth step needs n blocks.

2. A staircase with n steps has 1 + 2 + 3 + ... + n steps.  This is an arithmetic sequence where the first term is 1 and the last term is n.  The sum of the first n terms is:

y = n/2 (1 + n)

3. Solve for n.

2y = n (1 + n)

2y = n² + n

0 = n² + n − 2y

Using quadratic formula:

n = [ -1 ± √(1 − 4(1)(-2y)) ] / 2

n = [ -1 + √(1 + 8y) ] / 2

You might be interested in
26% of college students live in campus housing. a random sample of 15 college students is selected. find the probability that 10
Sloan [31]

Answer:

<em>The probability that 10 or more students will live in campus housing is approximately 0.111%</em>

Step-by-step explanation:

<u>Binomial distribution formula:</u>

<em>If the probability of success is p, then the probability of r successes out of n trials will be:   ^nC_{r}(p)^r(1-p)^n^-^r</em>

26% of college students live in campus housing. So here,  p= 26\%= 0.26

A random sample of 15 college students is selected. So,  n= 15

Now, "10 or more students" means  10 or 11 or 12 or 13 or 14 or 15 students. That means,  r= 10, 11, 12, 13, 14, 15

Thus, the probability that 10 or more students will live in campus housing will be........

[^1^5C_{10}(0.26)^1^0(1-0.26)^5]+[^1^5C_{11}(0.26)^1^1(1-0.26)^4]+[^1^5C_{12}(0.26)^1^2(1-0.26)^3]+[^1^5C_{13}(0.26)^1^3(1-0.26)^2]+[^1^5C_{14}(0.26)^1^4(1-0.26)^1]+[^1^5C_{15}(0.26)^1^5(1-0.26)^0]\\ \\ = 0.00094...+0.00015...+0.00001...+ 0.0000014...+ 0.000000071...+0.0000000016...\\ \\ =0.00111002... =0.111002...\% \approx 0.111\%


3 0
3 years ago
Find the area of the entire figure below.
MArishka [77]

We can divide this figure into triangle and trapezoid.

Area of a trapezoid = (1/2)*(base1 +base2)*height = (1/2)(11.75+18)*6.12 = 91.035

Area of a triangle = (1/2)*base*height=(1/2)*12*13.42 = 80.52

Area of the whole figure = 91.035 + 80.52 = 171.555

4 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
If θ is an angle in standard position and its terminal side passes through the point (4,3), find the exact value of \sin\thetasi
vivado [14]

Answer:

0.6

<em>I hope this helps you</em>

<em>:)</em>

3 0
3 years ago
The Perimeter of a rectangle is 64 cm. The length is 2cm more than 1.5 times the width
DiKsa [7]

Answer:

The length is 20

The width is 12

Step-by-step explanation:

Please let me know if you want me to add an explanation as to why this is the answer. I can definitely do that, I just wouldn’t want to write it if you don’t want me to :)

4 0
3 years ago
Other questions:
  • Find the​ slope-intercept form for the line passing through ​(​2,7​) and parallel to the line passing through ​(3,8​) and ​(-3​,
    11·1 answer
  • -3/5x+y=-4<br><br> What is the slope-intercept form? I'm in 7th grade.
    8·2 answers
  • What is 5/9 divided by 5 ?
    14·1 answer
  • What statement best describes the solution of the system of the equations shown 2x-y=1
    11·1 answer
  • There are 1,500 students in Jefferson Middle School. A poll found that 9 out of 14 students were planning to attend the school d
    15·1 answer
  • What values make the inequality x+6/6-x true?
    14·2 answers
  • 7y+14y+4y+7+14+17+10+4​
    5·2 answers
  • T. Dr. Sox drives through two stoplights on
    6·1 answer
  • What is the mean, median and mode of the following numbers?<br> 60, 10, 20, 30, 40, 60
    15·1 answer
  • HELP I WILL GIVE BRAINIEST
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!