Answer:
1/8
Explanation:
Given that the trihybrid parents have AaBbCc genotype for fruit color. The trait is a quantitative trait i.e. each dominant allele will have an additive effect on it. In this case, AaBbCc and AABBCC will not produce same fruit color because AaBbCc has only three loci contributing to the color while in AABBCC all the six loci are contributing to the color. For an offspring to be exactly similar to the AaBbCc parents it should have the same genotype of AaBbCc.
The probability of Aa to come from a cross between Aa and Aa is 2/4 or 1/2
The probability of Bb to come from a cross between Bb and Bb is 2/4 or 1/2
The probability of Cc to come from a cross between Cc and Cc is 2/4 or 1/2
So the collective probability of AaBbCc offspring from a cross between AaBbCc and AaBbCc parents would be=
1/2 * 1/2 * 1/2 = 1/8
Hence, assuming no effects of the environment, 1/8 of the offspring will have the same fruit color phenotype as the trihybrid parent.
- rock salt and gypsum: evaporation- dolostone: chemical replacement- chert and iron-rich formations: precipitation
Solution:
Cell-division control affects many aspects of development. Caenorhabditis elegans cell-cycle genes have been identified over the past decade, including at least two distinct Cyclin-Dependent Kinases (CDKs), their cyclin partners, positive and negative regulators, and downstream targets. The balance between CDK activation and inactivation determines whether cells proceed through G1 into S phase, and from G2 to M, through regulatory mechanisms that are conserved in more complex eukaryotes.
This is the required process through phosphorylation, Cdks signal the cell that it is ready to pass into the next stage of the cell cycle. As their name suggests, Cyclin-Dependent Protein Kinases are dependent on cyclins, another class of regulatory proteins. Cyclins bind to Cdks, activating the Cdks to phosphorylate other molecules.
By definition, animal cells have no cell wall -- only plant cells do. That being said, the major function of the cell wall in plant cells is to control cell pressure<span> due to …the influx and exit of water into and out of the cell. hope that helped</span>