In around 6.35 years, the population will be 1 million.
<h3> how many years will it take for the population to reach one million?</h3>
The population is modeled by the exponential equation:

Then we just need to solve the equation for t:

Let's solve that:

If we apply the natural logarithm to both sides:

So in around 6.35 years, the population will be 1 million.
If you want to learn more about exponential equations:
brainly.com/question/11832081
#SPJ1
Answer:
60
Step-by-step explanation:
Answer:
2ab(3b^2+2a+4)
Step-by-step explanation:
6ab^3 + 4a^2b + 8ab
2*3*a*b*b^2 +2*2*a*a*b +2*2*2*a*b
Factor out the common terms
2ab( 3*b^2 +2*a +2*2)
2ab(3b^2+2a+4)
The number of basketball that will fill up the entire office is <u>approximately 16,615.</u>
<em><u>Recall:</u></em>
Volume of a spherical shape = 
Volume of a rectangular prism = 
<em><u>Given:</u></em>
Diameter of basketball = 9.5 in.
Radius of the ball = 1/2 of 9.5 = 4.75 in.
Radius of the ball in ft = 0.4 ft (12 inches = 1 ft)
Dimension of the office (rectangular prism) = 20 ft by 18 ft by 12 ft
- First, find the volume of the basketball:
Volume of ball = 
Volume of basketball = 
- Convert to


<em>Therefore,</em>
- Volume of basketball =

- Find the volume of the office (rectangular prism):
Volume of the office = 
- Number of basket ball that will fill the office = Volume of office / volume of basketball
Number of basket ball that will fill the office = 
Therefore, it will take approximately <u>16,615 balls</u><u> to fill up the entire office</u>.
Learn more here:
brainly.com/question/16098833
To determine the correct statement in the choices presented, we first have to solve the area of the tray. We assume it to be in a rectangular form so the area is:
Area = 10 in x 10 in x 7/2.54 in = 275.59 in³ for the paint tray
1 gallon paint = 231 in³ paint
Therefore, the correct answer is the first option. <span>The paint will not fill the tray by 44.59 in</span>³<span>.</span>