<h3>Jason bought 20 stamps of $0.41 each and 8 postcards of $0.26 each.</h3>
<em><u>Solution:</u></em>
Let stamps be s and postcards be p
Given that,
The number of stamps was 4 more than twice the number of postcards
s = 4 + 2p -------- eqn 1
Jason bought both 41-cent stamps and 26-cent postcards and spent $10.28
41 cent = $ 0.41
26 cent = $ 0.26
Therefore,

0.41s + 0.26p = 10.28 --------- eqn 2
Substitute eqn 1 in eqn 2
0.41(4 + 2p) + 0.26p = 10.28
1.64 + 0.82p + 0.26p = 10.28
1.08p = 10.28 - 1.64
1.08p = 8.64
Divide both sides by 1.08
p = 8
Substitute p = 8 in eqn 1
s = 4 + 2(8)
s = 4 + 16
s = 20
Thus Jason bought 20 stamps and 8 post cards
The average rate of change from x = -1 to x = 2 is 2
<u>Solution:</u>
Given function is:
f(x) = 2x - 1
We have to find the average rate of change from x = -1 to x = 2
<em><u>The average rate of change is given as:</u></em>

<em><u>The average rate of change from x = -1 to x = 2 is given by formula:</u></em>

<em><u>Find f(2) and f( - 1)</u></em>
<em><u>Substitute x = 2 in given function</u></em>
f(2) = 2(2) - 1 = 4 - 1 = 3
<em><u>Substitute x = -1 in given function</u></em>
f( - 1) = 2(-1) - 1 = -2 - 1 = -3
<em><u>Substitute the values in above formula,</u></em>

Thus average rate of change from x = -1 to x = 2 is 2
Answer:
Step-by-step explanation:
24 p=72
Answer: y = x - 2
Step-by-step explanation:
Subtract 5 from both sides.