Answer:
Given the expression: 
Let the value of the given expression in radians be 
then;

......[1]
We know the value of 
Substitute the given value in [1] we have;

Since, the value of
is 0, therefore, the value of
is in the form of:
; where n is the integer.
At n =0, 1 and 2, {Since, n is the integer}
Value of
and
therefore, the answer in radians either
or
1) It's best to draw out a picture of a rectangle and label each corner with the coordinates given: Let's say (-5, 2) is point A, (-5, -2 1/3) is point B, (2 1/2, 2) is point C, and (2 1/2, -2 1/3) is point D.
2) That being said, line AB is one side of the rectangle, BC is another, CD is another, and lastly, AD is the fourth side.
3) We can use the distance formula and plug in the coordinates of each line to find how long every side is. Then you just need to solve it.
For example: if I want to find how long side AB is, I would use the point A (-5, 2) and B (2 1/2, 2) and plug them into the distance formula, where (-5, 2) is (x1, x2) and (2 1/2, 2) is (x2, y2) and solve that.
4) Repeat this process with side BC, CD, and AD, and add the results together. This will be your final answer; the perimeter of the rectangle.
Answer: slope is 1
equation: 1x-2 or x-2
I hope this is good enough:
Answer:
A
Step-by-step explanation:
Complete question:
Triangle A″B″C″ is formed using the translation (x + 2, y + 0) and the dilation by a scale factor of one half from the origin. Which equation explains the relationship between segment AB and segment A double prime B double prime?
A) segment a double prime b double prime = segment ab over 2
B) segment ab = segment a double prime b double prime over 2
C) segment ab over segment a double prime b double prime = one half
D) segment a double prime b double prime over segment ab = 2
Answer:
A) segment a double prime b double prime = segment ab over 2.
It can be rewritten as:
Step-by-step explanation:
Here, we are given triangle A″B″C which was formed using the translation (x + 2, y + 0) and the dilation by a scale factor of one half from the origin.
We know segment A"B" equals segment AB multiplied by the scale factor.
A"B" = AB * s.f.
Since we are given a scale factor of ½
Therefore,
The equation that explains the relationship between segment AB and segment A"B" is
Option A is correct