Answer:
Solution
verified
Verified by Toppr
Given:
Mass of body = 30 kg
gravitational acceleration on the moon = 1.62 m/s
2
Weight of the body on the moon = Mass of the body×gravitational acceleration on the moon=30×1.62=48 N
Answer:

Explanation: Two samples of blood that have different masses and temperatures and are mixed, we have to find the final temperature of the mixture. the final temperature can be found using the following formula:

(1) Formula basically tells us that the product of mass and temperature remains constant throughout, so the addition of two products of the two separate blood samples would be equal to the product of final temperature and the total mass of the mixture. Mathematically this means that:

Using (1) and plugging in the corresponding values, we get the answer as follows:
Answer:
(a) 19.62 N
(b) Box moves down the slope
(c) 24.43 N
Explanation:
(a)
2 Kg box causes tension
hence
where m is mass and g is gravitational force
T'=4*9.81 sin 35= 22.5071 N
Since T' is greater than
, then the box moves down the slope
(c)
Acceleration a=

When moving, the box will exert force T"=
T"= 4*9.81 sin 35 +(4*0.48)= 24.43 N
Answer:
43.16°
Explanation:
λ = Wavelength = 1.4×10⁻¹⁰ m
θ₁ = 20°
n can be any integer
d = distance between the two slits
Since for the first bright fringe, n₁ = 1
n₂ = 2 for second order line
The relation between the distance of the slits and the angle through which it is passed is:
dsinθ=nλ
As d and λ are constant

∴ Angle by which the second order line appear is 43.16°