Answer:
The final speed of puck 1 is 0.739 m/s towards west and puck 2 is 2.02 m/s towards east .
Explanation:
Let us consider east as positive direction and west as negative direction .
Given
mass of puck 1 , 
mass of puck 2 , 
initial speed of puck 1 , 
initial speed of puck 2 , 
Final speed of puck 1 and puck 2 be
respectively
Apply conservation of linear momentum

=>
=>
-----(A)
Since collision is perfectly elastic , coefficient restitution e=1

=>
------(B)
From equation (A) and (B)

and 
Thus the final speed of puck 1 is 0.739 m/s towards west and puck 2 is 2.02 m/s towards east .
Here Power = Voltage * Current
So, Voltage = Power/Current
Put the values,
V = 240/2
V = 120 V
In short, Your Final Answer would be: 120 Volts
Hope this helps!
No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings.
Hope this helped you
Answer:
2.06 m/s
Explanation:
From the law of conservation of linear momentum, the sum of momentum before and after collision are equal. Considering this case where we have frictionless surface, no momentum is lost in the process.
Momentum before collision
Momentum is given by p=mv where m and v represent mass. The initial sum of momentum will be 9v+(27*0.5)=9v+13.5
Momentum after collision
The momentum after collision will be given by (9+27)*0.9=32.4
Relating the two then 9v+13.5=32.4
9v=18.5
V=2.055555555555555555555555555555555555555 m/s
Rounded off, v is approximately 2.06 m/s