Answer:
Translate 10 units right, 9 units up
Step-by-step explanation:
translations simply take the image and move it up or down or side to side, reflections flip the image, dilation changes the dimensions of an image, and rotation rotates an image on its origin point.
Answer:
I see this
"Which relation is a function?
A {(-3,4),(-3,8),(6,8)}
B {(6,4),(-3,8),(6,8)}
C {(-3,4),(3,-8),(3,8)}
D {(-3,4),(3,5),(-3,8)}"
So the answer is none of these.
Please make sure you have the correct problem.
Step-by-step explanation:
A set of points is a function if you have all your x's are different. That is, all the x's must be distinct. There can be no value of x that appears more than once.
If you look at choice A, this is not a function because the first two points share the same x, which is -3.
Choice B is not a function because the first and last point share the same x, which is 6.
Choice C is not a function because the last two points share the same x, which is 3.
Choice D is not a function because the first and last choice share the same x, which is -3.
None of your choices show a function.
If you don't have that choice you might want to verify you written the problem correctly.
This is what I see:
"Which relation is a function?
A {(-3,4),(-3,8),(6,8)}
B {(6,4),(-3,8),(6,8)}
C {(-3,4),(3,-8),(3,8)}
D {(-3,4),(3,5),(-3,8)}"
Answer: 15e^5x
Step - by - step
y=3e^5x - 2
By the sum rule, the derivative of 3e^5x - 2 with respect to x is d/dx [ 3e^5x ] + d/dx [-2].
d/dx [ 3e^5x ] + d/dx [ -2 ]
Evalute d/dx [ 3e^5x ]
Since 3 is constant with respect to x , the derivative of 3e^5x with respect to x is
3 d/dx [ e^5x ].
3 d/dx [ e^5x ] + d/dx [ -2 ]
Differentiate using the chain rule, which states that d/dx [ f(g(x))] is f' (g(x)) g' (x) where f(x) = e^x and g(x) = 5x.
To apply the Chain Rule, set u as 5x.
3 ( d/du [ e^u] d/dx [5x] ) + d/dx [ -2]
Differentiate using the Exponential rule which states that d/du [ a^u ] is a^u ln(a) where a=e.
3( e^u d/dx[5x] ) + d/dx [ -2 ]
Replace
3(e^5x d/dx [5x] ) + d/dx [ -2 ]
3(e^5x( 5 d/dx [x] )) + d/dx [ -2 ]
Diffentiate using the Power Rule which states that d/dx [x^n] is nx^n-1 where n=1.
3(e^5x(5*1)) + d/dx [-2]
3 ( e^5x * 5 ) + d/dx [-2]
Multiply 5 by 3
15e^5x + d/dx [-2]
Since -2 is constant with respect to x, the derivative of -2 with respect to x is 0.
15e^5x + 0
15e^5x
The sum of the first n natural numbers and 0=
n*(n+1)/2
Answer:
a. T² - T¹ = d ( A. P) -5
b. T²/T¹ = r (G. P) 3/4
Step-by-step explanation:
a. 15 - 20 = -5
b. 15/20 = 3/4