<span>Anton van Leeuwenhoek learned to grind lenses ( 1668) and develop simple microscopes.
</span>
Leeuwenhoek heated the middle of a small soda glass rod , over a flame. On pulling apart the two ends, the glass rod elongated into thin whiskers .
Heating the end of this whisker resulted in a tiny high quality glass sphere. These glass spheres then became the lens of his microscope, with the smallest sphere providing the greatest magnification.
Leeuwenhoek's designs were very basic. The body of the microscope was a single lens mounted in a tiny hole on a brass plate. The specimen was then mounted on a sharp point that sticks up in front of the lens. It's position and focus could be adjusted by turning the two screws.
The entire instrument was about 3 to 4 inches long and had to be held up close to the eye, requiring good lighting and great patience to use.
Find latitude and longitude
Probably Mary's doctor will not doctor a chronic villus sampling because of her first time pregnancy at the aged of 37 and her doctor ordered so many series of routine screening procedure. The doctor will not order a chronic villus sampling on Mary.
Answer:
The statement that is true about red currents in the thermohaline circulation is that water in the red currents contain less salt (option A).
Explanation:
Thermohaline circulation is a concept used in oceanography, referring to the oceanic circulation that depends on factors such as surface heat and salinity, as well as the density gradient that they determine.
On a map, the different currents that are part of the thermohaline circulation are usually represented with blue and red lines, where:
- <em>The blue lines represent deep, cold, dense and higher salinity currents.</em>
- <em>The red lines represent surface currents, warm, with less salt content, so they are less dense.</em>
The red currents (see image) represented on the map have less salt content, compared to the currents represented in blue.
Learn more:
Thermohaline circulation brainly.com/question/8369487