Answer:
Wedges and dashes are used to indicate the three dimensional shape in a drawn structure.
A wedge indicates that the atom or group is GOING OUT of the page.
Explanation:
wedges and dashes are ways or drawings use to represent three dimensional shape in a structure. Lines are use to represent image in the structure. A wedge line shows that molecules or bonds are moving towards the viewer i.e out of the the page.
A dashes line shows that bonds or atom are moving away the viewer or going into the group.
The doubling the amount will change the gibbs free energy as it is an extensive property which depends upon the the amount of the substance
However as asked in question the DeltaG has unit of kcal /mol
So we have already defined the amount of substance to be one mole this means the value per mole will be same irrespective of the amount taken as we are reporting it for a fixed one mole of a substance
Hence answer is
-100 kcal/mol
Explanation:
The given reaction will be as follows.
............. (1)
= ![[Ag^{+}][Cl^{-}] = 1.8 \times 10^{-10}](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D%20%3D%201.8%20%5Ctimes%2010%5E%7B-10%7D)
Reaction for the complex formation is as follows.
........... (2)
= ![\frac{[Ag(NH_{3})_{2}]}{[Ag^{+}][NH_{3}]^{2}} = 1.0 \times 10^{8}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BAg%28NH_%7B3%7D%29_%7B2%7D%5D%7D%7B%5BAg%5E%7B%2B%7D%5D%5BNH_%7B3%7D%5D%5E%7B2%7D%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B8%7D)
When we add both equations (1) and (2) then the resultant equation is as follows.
............. (3)
Therefore, equilibrium constant will be as follows.
K = 
= 
= 
Since, we need 0.010 mol of AgCl to be soluble in 1 liter of solution after after addition of
for complexation. This means we have to set
=
= 
= 0.010 M
For the net reaction, ![AgCl(s) + 2NH_{3}(aq) \rightarrow [Ag(NH_{3})_{2}]^{+}(aq) + Cl^{-}(aq)](https://tex.z-dn.net/?f=AgCl%28s%29%20%2B%202NH_%7B3%7D%28aq%29%20%5Crightarrow%20%5BAg%28NH_%7B3%7D%29_%7B2%7D%5D%5E%7B%2B%7D%28aq%29%20%2B%20Cl%5E%7B-%7D%28aq%29)
Initial : 0.010 x 0 0
Change : -0.010 -0.020 +0.010 +0.010
Equilibrium : 0 x - 0.020 0.010 0.010
Hence, the equilibrium constant expression for this is as follows.
K = ![\frac{[Ag(NH_{3})^{+}_{2}][Cl^{-}]}{[NH_{3}]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BAg%28NH_%7B3%7D%29%5E%7B%2B%7D_%7B2%7D%5D%5BCl%5E%7B-%7D%5D%7D%7B%5BNH_%7B3%7D%5D%5E%7B2%7D%7D)
= 
x = 0.0945 mol
or, x = 0.095 mol (approx)
Thus, we can conclude that the number of moles of
needed to be added is 0.095 mol.