Answer:
The equation of ellipse centered at the origin

Step-by-step explanation:
given the foci of ellipse (±√8,0) and c0-vertices are (0,±√10)
The foci are (-C,0) and (C ,0)
Given data (±√8,0)
the focus has x-coordinates so the focus is lie on x- axis.
The major axis also lie on x-axis
The minor axis lies on y-axis so c0-vertices are (0,±√10)
given focus C = ae = √8
Given co-vertices ( minor axis) (0,±b) = (0,±√10)
b= √10
The relation between the focus and semi major axes and semi minor axes are 




The equation of ellipse formula

we know that 
<u>Final answer:</u>-
<u>The equation of ellipse centered at the origin</u>
<u />
<u />