1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bingel [31]
3 years ago
12

GET BRAINLIEST FOR THE CORRECT ANSWER AND EXPLANATION!

Mathematics
1 answer:
Tresset [83]3 years ago
3 0

Interpreting the inequality, it is found that the correct option is given by F.

------------------

  • The first equation is of the line.
  • The equal sign is present in the inequality, which means that the line is not dashed, which removes option G.

In standard form, the equation of the line is:

x + 2y = 6

2y = 6 - x

y = -0.5x + 2

Thus it is a decreasing line, which removes options J.

  • We are interested in the region on the plane below the line, that is, less than the line, which removes option H.

------------------

  • As for the second equation, the normalized equation is:

3x^2 + 3y^2 = 12

3(x^2 + y^2) = 12

x^2 + y^2 = 4

  • Thus, a circle centered at the origin and with radius 2.
  • Now, we have to check if the line x + 2y - 6 = 0, with coefficients a = 1, b = 2, c = -6, intersects the circle, of centre x = 0, y = 0
  • First, we find the following distance:

d = \sqrt{\frac{|ax + by + c|}{a^2 + b^2}}

  • Considering the coefficients of the line and the center of the circle.

d = \sqrt{\frac{|1(0) + 2(0) - 6|}{1^2 + 2^2}} = \sqrt{\frac{6}{5}} = 1.1

  • This distance is less than the radius, thus, the line intersects the circle, which removes option K, and states that the correct option is given by F.

A similar problem is given at brainly.com/question/16505684

You might be interested in
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
The cost of 6 sandwiches and 4 drinks is $53. The cost of 4 sandwiches and 6 drinks is $47. How much does one sandwich cost?
melomori [17]

In this question, we're trying to find cost of one sandwich.

To find this, we must make a systems of equation from the given information:

We would represent sandwiches as "s" and drinks as "d".

Systems of equations:

6s + 4d = 53

4s + 6d = 47

Solve for s:

6(6s + 4d = 53)

-4(4s + 6d = 47)

36s + 24d = 318

-16s - 24d = -188

--------------------------

20s = 130

Divide both sides by s

s = 6.50

This means that one sandwich costs $6.50

Answer:

$6.50

8 0
3 years ago
A clothing store offers a 30% discount on all items in the store. Part A: If the original price of a sweater is $40, how much wi
mel-nik [20]

Answer:

Step-by-step explanation:

Part A

The discount offered is 30%. If the original price of a sweater is $40, then the discount on the sweater is

30/100 × 40 = $12

The cost of the sweater after the discount is

40 - 12 = $28

Part B

The discount on the shirts was 30%. The amount taken off the shirt is

30/100 × 63 = $18.9

The original cost of the three shirts is

63 - 18.9 = $44.1

Since the shirts are of the same price,the original cost of each shirt is

44.1/3 = $14.7

Part C

Each employee gets an additional 10% off the already discounted price. If an employee buys an item with an original price of $40, then the additional amount taken off is

10/100 × 40 = $4

The amount that the employee would pay is

40 - 4 = $36

6 0
4 years ago
How many times does 78 go into 171
MatroZZZ [7]

Hello!

You simply divide 78 by 171.

78÷171= 0.45614035

Rounded: 0.46

6 0
3 years ago
Read 2 more answers
One hundred ople were surveyed
Sedaia [141]

Answer:

4/5

Step-by-step explanation:

Since there are 100 people, and 20 people say their favorite flower was the tulip, we can make a fraction of the people who like tulip.

20/100=2/10=1/5

There are the people who's favorite flower is tulip. However, the question asks what fraction of the people say their favorite flower is NOT tulip.

Take 1 as the entire people surveyed, and subtract:

1-1/5= 4/5

Therefore 4/5 of the people surveyed says their favorite flower is NOT tulip.

7 0
3 years ago
Other questions:
  • A total of $6000 was invested, part of it at 3% interest and the remainder at 8%. If the total yearly interest amounted to $380,
    8·1 answer
  • 6x+175=3x+127 what does x=​
    12·2 answers
  • Anyone waanna talk on Instagram ​
    9·2 answers
  • How many whole servings of 3/4 cups are in 31/2 cups of ice cream
    11·1 answer
  • Solve A2 +b2 =c2 for a
    11·2 answers
  • The number of words Jenna can say varies directly as the time. Jenna can say 392 words in 2 minutes.
    13·1 answer
  • The doubling time for an investment is 7.5 yeas. Find an exponential model for the growth of your money. Then find how long will
    13·1 answer
  • Số táo của An, Bình, Chi là như nhau. An cho đi 17 quả , Chi cho đi 19 quả thì lúc này số táo của Chi gấp 5 lần tổng số táo còn
    5·1 answer
  • Help I am in fourth :(
    12·1 answer
  • Answer please and thank you
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!