<h3>Answer</h3>
6.6 N pointing to the right
<h3>Explanation</h3>
Given that,
two forces acting of magnitude 3.6N
angle between them = 48°
To find,
the third force that will cause the object to be in equilibrium
<h3>1)</h3>
Find the vertical and horizontal components of the two forces
vertical force1 = sin(24)(3.6)
vertical force2= -sin(24)(3.6)
<em>(negative sign since it is acting on opposite direction)</em>
vertical force3 = sin(24)(3.6) - sin(24)(3.6)
= 0
<h3>2)</h3>
horizontal force1 = cos(24)(3.6)
horizontal force2= cos(24)(3.6)
horizontal force3 = cos(24)(3.6) + cos(24)(3.6)
= 2(cos(24)(3.6))
= 6.5775 N
≈ 6.6 N
<em />
<em />
Answer:
10.2 m
Explanation:
The position of the dark fringes (destructive interference) formed on a distant screen in the interference pattern produced by diffraction from a single slit are given by the formula:

where
y is the position of the m-th minimum
m is the order of the minimum
D is the distance of the screen from the slit
d is the width of the slit
is the wavelength of the light used
In this problem we have:
is the wavelength of the light
is the width of the slit
m = 13 is the order of the minimum
is the distance of the 13th dark fringe from the central maximum
Solving for D, we find the distance of the screen from the slit:

Answer:
An active pendulum has the most kinetic energy at the lowest point of its swing when the weight is moving fastest.
Explanation:
SO YOU HAVE THE LEAST KINETIC ENERGY AT THE HIGHEST POINT OF THE SWING WHEN IT'S NOT ACTIVE
Folk song
(Word cap filler)