Answer:
See explanation
Step-by-step explanation:
Let x be the number of simple arrangements and y be the number of grand arrangements.
1. The florist makes at least twice as many of the simple arrangements as the grand arrangements, so

2. A florist can make a grand arrangement in 18 minutes
hour, then he can make y arrangements in
hours.
A florist can make a simple arrangement in 10 minutes
hour, so he can make x arrangements in
hours.
The florist can work only 40 hours per week, then

3. The profit on the simple arrangement is $10, then the profit on x simple arrangements is $10x.
The profit on the grand arrangement is $25, then the profit on y grand arrangements is $25y.
Total profit: $(10x+25y)
Plot first two inequalities and find the point where the profit is maximum. This point is point of intersection of lines
and 
But this point has not integer coordinates. The nearest point with two integer coordinates is (126,63), then the maximum profit is

Answer: - (27/40)
Step-by-step explanation:
-(3/8) / (5/9) is the same as -(3/8) × (9/5)
-((3×9) / (8×5))
-(27/40)
Answer:
Step-by-step explanation:
10x^2(3x^2 - 5x) Remove the brackets (Distributive Property)
10*3*x^2 * x^2 - 5x * 10x^2
30 x^(2 + 2) - 5*10x^(2+1)
30x^4 - 50x^3
Answer:
25
Step-by-step explanation:
Answer:
<em>We disagree with Zach and Delia and agree with Alicia</em>
Step-by-step explanation:
The domain of a function is the set of values of the independent variable that the function can take according to given rules or restrictions.
The range is the set of values the dependent variable can take for every possible value of the domain.
The graph shows a continuous line representing the values of the function. We must take a careful look to the values of x (horizontal axis) where the function exists. It can be done by drawing an imaginary vertical line passing through the value of x. If that line touches the graph of the function, it belongs to the domain. It's clear that every value of x between -5 and 3 (both inclusive because there are solid dots in the extremes) belong to the domain:
Domain: 
The range is obtained in a similar way as the domain, but the imaginary lines must be horizontal. That gives us the values of y range from -7 to 5 both inclusive:
Range:

Thus we disagree with Zach and Delia and agree with Alicia