Answer: No. If two lines have the same slope they are parallel lines (or they are the same line), so they cannot intersect at one point. Because the triangles are congruent, the angles where the lines meet the x-axis are congruent. Because the lines form the same angle with the x-axis, they are parallel.
Step-by-step explanation:
<u>Answer</u><u> </u><u>:</u><u>-</u>
9(3+√3) feet
<u>Step </u><u>by</u><u> step</u><u> explanation</u><u> </u><u>:</u><u>-</u>
A triangle is given to us. In which one angle is 30° and length of one side is 18ft ( hypontenuse) .So here we can use trignometric Ratios to find values of rest sides. Let's lable the figure as ∆ABC .
Now here the other angle will be = (90°-30°)=60° .
<u>In ∆ABC , </u>
=> sin 30 ° = AB / AC
=> 1/2 = AB / 18ft
=> AB = 18ft/2
=> AB = 9ft .
<u>Again</u><u> </u><u>In</u><u> </u><u>∆</u><u> </u><u>ABC</u><u> </u><u>,</u><u> </u>
=> cos 30° = BC / AC
=> √3/2 = BC / 18ft
=> BC = 18 * √3/2 ft
=> BC = 9√3 ft .
Hence the perimeter will be equal to the sum of all sides = ( 18 + 9 + 9√3 ) ft = 27 + 9√3 ft = 9(3+√3) ft .
<h3>
<u>Hence </u><u>the</u><u> </u><u>perim</u><u>eter</u><u> of</u><u> the</u><u> </u><u>triangular</u><u> </u><u>pathway</u><u> </u><u>shown</u><u> </u><u>is</u><u> </u><u>9</u><u> </u><u>(</u><u> </u><u>3</u><u> </u><u>+</u><u> </u><u>√</u><u>3</u><u> </u><u>)</u><u> </u><u>ft</u><u> </u><u>.</u></h3>
Hi there
The formula to find I (ARP)
I=(2yc)/(m×(1+n)
I=(2×12×350)÷(1,860×(1+36))
I=0.1221×100
I=12.21%
Good luck!
We have the following system of equations:
y = -6x-6
y = x2-5x-6
Matching we have:
x2-5x-6 = -6x-6
Rewriting we have:
x2-5x-6 + 6x + 6 = 0
x2 + x = 0
Rewriting:
x (x + 1) = 0
The solutions are:
x = 0
x = -1
For x = 0
y = -6 (0) -6 = 0-6 = -6
y = -6
For x = -1
y = -6 (-1) -6 = 6-6 = 0
y = 0
The solutions are:
(x, y) = (0, -6)
(x, y) = (- 1, 0)
Answer:
The solutions of the system are:
(-1, 0) and (0, -6)