Answer:
Because θ lies in quadrant II, 2θ must lie in quadrant IV. This means the tangent of 2θ is negative.
The adjacent side to θ is 7 because √(25²-24²)=7, so tanθ=7/24.
The double angle formula for tangent is tan 2θ = (2 tan θ) / (1 − tan² θ).
Substituting the value for tanθ in and keeping in mind that this is in quadrant IV, we get tan 2θ = -(2(7/24)/(1-(7/24)²)).
Simplified, this becomes tan 2θ = -336/527.
Therefore, the answer is C. -336/527.
let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}}~\hfill \stackrel{mixed}{3\frac{4}{5}}\implies \cfrac{3\cdot 5+4}{5}\implies \stackrel{improper}{\cfrac{19}{5}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{5}{4}\div\cfrac{19}{5}\implies \cfrac{5}{4}\cdot \cfrac{5}{19}\implies \cfrac{25}{76}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B4%7D%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%205%2B4%7D%7B5%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B5%7D%7B4%7D%5Cdiv%5Ccfrac%7B19%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B4%7D%5Ccdot%20%5Ccfrac%7B5%7D%7B19%7D%5Cimplies%20%5Ccfrac%7B25%7D%7B76%7D)
The value of θ from the given equation is 48.59degrees
<h3>Trigonometry identity</h3>
Given the trigonometry function
Sin(θ)=3/4
We are to find the value of theta that will make the expression true
Take the arcsin of both sides
arcsin Sin(θ)= arcsin(3/4)
θ = arcsin(3/4)
θ = 48.59
Hence the value of θ from the given equation is θ = 48.59 defense
Learn more on trig identity here:brainly.com/question/7331447