Find the area of the shaded region:
2 answers:
Find the area of the circle:
Area = PI x r^2
Area = 3.14 x 9^2
Area = 3.14 x 81
Area = 254.34 square cm
Now multiply the area of the circle by the shaded portion which is the fraction of the degree over 360 degrees:
254.34 x 80/360 = 20,347.2/360 = 56.52
The shaded area is 56.52 square cm.
Area of circle formula: A = πr²
A = π(9)²
A = 81π
A = 254.34cm²
The ratio of degrees in the shaded region to total degrees in a circle:
80/360 = 40/180 = 20/90 = 10/45 = 2/9
Multiply:
254.34/1 * 2/9
508.68/9
56.52
Therefore, the area of the shaded region is 56.52cm²
Best of Luck!
You might be interested in
Answer:
100
Step-by-step explanation:
B. 700
1000 out of 700 is the same as 10 out of 7 but simplified
Answer: a-b+c+d =4
Step-by-step explanation:
The given system of equation is
![2x+8y=7\\4x-2y=9](https://tex.z-dn.net/?f=2x%2B8y%3D7%5C%5C4x-2y%3D9)
from this we have the following matrices
![A_1 =\begin{bmatrix}\\2 &8 \\ \\4&2 \\\end{bmatrix}\ ,X=\begin{bmatrix}\\x\\ \\y\\\end{bmatrix}\text{and}\ C=\begin{bmatrix}\\7\\ \\9\\\end{bmatrix}](https://tex.z-dn.net/?f=A_1%20%3D%5Cbegin%7Bbmatrix%7D%5C%5C2%20%268%20%5C%5C%20%5C%5C4%262%20%5C%5C%5Cend%7Bbmatrix%7D%5C%20%2CX%3D%5Cbegin%7Bbmatrix%7D%5C%5Cx%5C%5C%20%5C%5Cy%5C%5C%5Cend%7Bbmatrix%7D%5Ctext%7Band%7D%5C%20C%3D%5Cbegin%7Bbmatrix%7D%5C%5C7%5C%5C%20%5C%5C9%5C%5C%5Cend%7Bbmatrix%7D)
the given matrix A =![\begin{bmatrix}\\a &c \\ \\b &d \\\end{bmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bbmatrix%7D%5C%5Ca%20%26c%20%5C%5C%20%5C%5Cb%20%26d%20%5C%5C%5Cend%7Bbmatrix%7D)
On comparing Matrix
with Matrix A
![\begin{bmatrix}\\a &c \\ \\b &d \\\end{bmatrix}=\begin{bmatrix}\\2&8 \\ \\4 &-2 \\\end{bmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bbmatrix%7D%5C%5Ca%20%26c%20%5C%5C%20%5C%5Cb%20%26d%20%5C%5C%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D%5C%5C2%268%20%5C%5C%20%5C%5C4%20%26-2%20%5C%5C%5Cend%7Bbmatrix%7D)
we have the following values
a=2 ,b=4,c=8,d=-2
Thus a-b+c+d =2-4+8+(-2)=4
Answer:
7 rings = $2.52
then 1 ring will cost = 1/7×2.52
= 0.36
Therefore 1 ring will cost $0.36.
Answer:
12 30
Step-by-step explanation: